Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational evidence that hyperconjugative interactions are not responsible for the anomeric effect

A Corrigendum to this article was published on 01 September 2010

This article has been updated

Abstract

The ‘anomeric effect’ is the thermodynamic preference for polar substituents to occupy the axial position in the chair conformation of various heterocycles. The most common explanation given for this effect at present is hyperconjugation from the lone pairs on the ring heteroatom to the antibonding orbital between the anomeric carbon and its linking substituent. Alternatively, the anomeric effect could be explained by intramolecular electrostatic interactions between local dipoles. Few models can provide convincing data for either theory at the quantum-mechanical level. Now, using the extended block-localized wavefunction method, which is the simplest form of valence bond theory, we have evaluated the degree of hyperconjugation in various compounds that display the anomeric effect and have interpreted their conformational preferences in terms of steric, hyperconjugation and dispersion effects. The results provide strong evidence that hyperconjugative interactions are not responsible for the anomeric effect and that it is better interpreted in terms of electrostatic interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anomeric effect in substituted tetrahydropyran.
Figure 2: Two most common explanations for the anomeric effect.
Figure 3: Electron density difference (EDD) maps showing electron delocalization within compounds displaying the anomeric effect.

Similar content being viewed by others

Change history

  • 28 July 2010

    In the version of this Article originally published, Fig. 1 was incorrect. This error has now been corrected in the HTML and PDF versions of the Article.

References

  1. Edward, J. T. Stability of glycosides to acid hydrolysis. Chem. Ind. (Lond.) 1102–1104 (1955).

  2. Lemieux, R. U. & Chü, P. in 133rd National Meeting of the American Chemical Society 31N (American Chemical Society, 1958).

  3. Eliel, E. L. Conformational analysis in heterocyclic systems: recent results and applications. Angew. Chem. Int. Ed. Engl. 11, 739–750 (1972).

    Article  CAS  Google Scholar 

  4. Szarek, W. A. & Horton, D. (eds) Anomeric Effect: Origin and Consequences (American Chemical Society, 1979).

  5. Kirby, A. J. Anomeric Effect and Related Stereoelectronic Effects at Oxygen (Springer-Verlag, 1983).

  6. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry (Elsevier, 1983).

  7. Tvaroska, I. & Bleha, T. Anomeric and exoanomeric effects in carbohydrate chemistry. Adv. Carbohydr. Chem. Biochem. 47, 45–123 (1989).

    Article  CAS  Google Scholar 

  8. Thatcher, G. R. (ed.) The Anomeric Effect and Associated Stereoelectronic Effects (American Chemical Society, 1993).

  9. Juaristi, E. & Cuevas, G. The Anomeric Effect (CRC Press, 1995).

  10. Smith, M. B. & March, J. March's Advanced Organic Chemistry (Wiley, 2007).

  11. Anderson, C. B. & Sepp, D. T. Conformation and the anomeric effect in 2-halotetrahydropyrans. J. Org. Chem. 32, 607–611 (1967).

    Article  CAS  Google Scholar 

  12. Ha, S. H., Gao, J., Tidor, B., Brady, J. W. & Karplus, M. Solvent effect on the anomeric equilibrium in D-glucose—a free-energy simulation analysis. J. Am. Chem. Soc. 113, 1553–1557 (1991).

    Article  CAS  Google Scholar 

  13. Cramer, C. J. Anomeric and reverse anomeric effects in the gas phase and aqueous solution. J. Org. Chem. 57, 7034–7043 (1992).

    Article  CAS  Google Scholar 

  14. Fuchs, B., Schleifer, L. & Tartakovsky, E. Structure and conformation of heterocycles .14. probing the anomeric effect—the structural criterion. New J. Chem. 8, 275–278 (1984).

    CAS  Google Scholar 

  15. Perrin, C. L., Armstrong, K. B. & Fabian, M. A. The origin of the anomeric effect: conformational analysis of 2-methoxy-1,3-dimethylhexahydropyrimidine. J. Am. Chem. Soc. 116, 715–722 (1994).

    Article  CAS  Google Scholar 

  16. Box, V. G. S. The anomeric effect of monosaccharides and their derivatives. Insights from the new QVBMM molecular mechanics force field. Heterocycles 48, 2389–2417 (1998).

    Article  CAS  Google Scholar 

  17. Fuchs, B., Ellencweig, A., Tartakovsky, E. & Aped, P. Structure and conformation of heterocycles. 15. Solvent polarity and the anomeric effect. Angew. Chem. Int. Ed. 25, 287–289 (1986).

    Article  Google Scholar 

  18. Juaristi, E. & Cuevas, G. Recent studies of the anomeric effect. Tetrahedron 48, 5019–5087 (1992).

    Article  CAS  Google Scholar 

  19. Vila, A. & Mosquera, R. A. Atoms in molecules interpretation of the anomeric effect in the OCO unit. J. Comput. Chem. 28, 1516–1530 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Salzner, U. & Schleyer, P. v. R. Ab initio examination of anomeric effects in tetrahydropyrans, 1,3-dioxanes and glucose. J. Org. Chem. 59, 2138–2155 (1994).

    Article  CAS  Google Scholar 

  21. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor−acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  22. Pophristic, V. & Goodman, L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature 411, 565–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Bickelhaupt, F. M. & Baerends, E. J. The case for steric repulsion causing the staggered conformation of ethane. Angew. Chem. Int. Ed. 42, 4183–4188 (2003).

    Article  CAS  Google Scholar 

  24. Weinhold, F. Rebuttal to the Bickelhaupt–Baerends case for steric repulsion causing the staggered conformation of ethane. Angew. Chem. Int. Ed. 42, 4188–4194 (2003).

    Article  CAS  Google Scholar 

  25. Mo, Y. et al. The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. Angew. Chem. Int. Ed. 43, 1986–1990 (2004).

    Article  CAS  Google Scholar 

  26. Mo, Y. & Gao, J. Theoretical analysis of the rotational barrier of ethane. Acc. Chem. Res. 40, 113–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Cooper, D. L. (ed.) Valence Bond Theory (Elsevier, 2002).

  28. Shaik, S. S. & Hiberty, P. C. A Chemist's Guide to Valence Bond Theory (Wiley, 2008).

  29. Wheland, G. W. The Theory of Resonance (John Wiley & Sons, 1944).

  30. Stoll, H., Wagenblast, G. & Preuss, H. On the use of local basis sets for localized molecular orbitals. Theor. Chim. Acta 57, 169–178 (1980).

    Article  CAS  Google Scholar 

  31. Mehler, E. L. Self-consistent, nonorthogonal group function approximation for polyatomic systems. II. Analysis of noncovalent interactions. J. Chem. Phys. 74, 6298–6306 (1981).

    Article  CAS  Google Scholar 

  32. Gianinetti, E., Raimondi, M. & Tornaghi, E. Modification of the Roothaan equations to exclude BSSE from molecular interaction calculations. Int. J. Quantum Chem. 60, 157–166 (1996).

    Article  CAS  Google Scholar 

  33. Mo, Y. & Peyerimhoff, S. D. Theoretical analysis of electronic delocalization. J. Chem. Phys. 109, 1687–1697 (1998).

    Article  CAS  Google Scholar 

  34. Mo, Y., Song, L. & Lin, Y. The block-localized wavefunction (BLW) method at the density functional theory (DFT) level. J. Phys. Chem. A 111, 8291–8301 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cembran, A., Song, L., Mo, Y. & Gao, J. Block-localized density functional theory (BLDFT), diabatic coupling, and their use in valence bond theory for representing reactive potential energy surfaces. J. Chem. Theory Comput. 5, 2702–2716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mo, Y., Gao, J. & Peyerimhoff, S. D. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach. J. Chem. Phys. 112, 5530–5538 (2000).

    Article  CAS  Google Scholar 

  37. Shaik, S. S., Hiberty, P. C., Lefour, J. M. & Ohanessian, G. Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene and their isoelectronic species. J. Am. Chem. Soc. 109, 363–374 (1987).

    Article  CAS  Google Scholar 

  38. Hiberty, P. C. & Byrman, C. P. Role of π-electron delocalization in the enhanced acidity of carboxylic acids and enols relative to alcohols. J. Am. Chem. Soc. 117, 9875–9880 (1995).

    Article  CAS  Google Scholar 

  39. Lauvergnat, D. & Hiberty, P. C. Role of conjugation in the stabilities and rotational barriers of formamide and thioformamide. An ab initio valence-bond study J. Am. Chem. Soc. 119, 9478–9482 (1997).

    Article  CAS  Google Scholar 

  40. Cappel, D., Tullmann, S., Krapp, A. & Frenking, G. Direct estimate of the conjugative and hyperconjugative stabilization in diynes, dienes and related compounds. Angew. Chem. Int. Ed. 44, 3617–3620 (2005).

    Article  CAS  Google Scholar 

  41. Linares, M., Braïda, B. & Humbel, S. Lewis-based valence bond scheme: application to the allyl cation J. Phys. Chem. A 110, 2505–2509 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Wiberg, K. B. & Murcko, M. A. Rotational barriers. 4. Dimethoxymethane—the anomeric effect revisited. J. Am. Chem. Soc. 111, 4821–4828 (1989).

    Article  CAS  Google Scholar 

  43. Smith, G. D., Jaffe, R. L. & Yoon, D. Y. Conformational characteristics of dimethoxymethane based upon ab initio electronic structure calculations. J. Phys. Chem. 98, 9072–9077 (1994).

    Article  CAS  Google Scholar 

  44. Kneisler, J. R. & Allinger, N. L. Ab initio and density functional theory study of structures and energies for dimethoxymethane as a model for the anomeric effect. J. Comput. Chem. 17, 757–766 (1996).

    Article  CAS  Google Scholar 

  45. Bande, A. & Michl, J. Conformational dependence of σ-electron delocalization in linear chains: permethylated oligosilanes. Chem. Eur. J. 15, 8504–8517 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Eliel, E. L., Hargrave, K. D., Pietrusiewicz, K. M. & Manoharan, M. Conformational analysis. 42. Monosubstituted tetrahydropyrans. J. Am. Chem. Soc. 104, 3635–3643 (1982).

    Article  CAS  Google Scholar 

  47. Franck, R. W. A revision of the value for the anomeric effect. Tetrahedron 39, 3251–3252 (1983).

    Article  CAS  Google Scholar 

  48. Song, L., Mo, Y., Zhang, Q. & Wu, W. XMVB: a program for ab initio nonorthogonal valence bond computations. J. Comput. Chem. 26, 514–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Keck Foundation and Western Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yirong Mo.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1325 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Y. Computational evidence that hyperconjugative interactions are not responsible for the anomeric effect. Nature Chem 2, 666–671 (2010). https://doi.org/10.1038/nchem.721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.721

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics