Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

Abstract

Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene–olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dehydroaromatization of n-hexane catalysed by iridium pincer complexes 2, 4 or 6.
Figure 2: Dehydroaromatization of n-octane catalysed by 2, 4 or 6 (with TBE as hydrogen-acceptor).
Figure 3: Dehydroaromatization of n-octane catalysed by 2 with propene as hydrogen acceptor.
Figure 4: Dehydroaromatization of n-decane catalysed by 4.
Figure 5: Dehydroaromatization of n-dodecane.

Similar content being viewed by others

References

  1. Wittcoff, H. A., Reuben, B. G. & Plotkin, J. S. Industrial Organic Chemicals 2nd edn (Wiley–IEEE, 2005).

    Google Scholar 

  2. Annual Energy Outlook 2010 With Projections to 2035 (US Energy Information Administration, 2010); see http://www.eia.doe.gov/oiaf/aeo/pdf/0383(2010).pdf

  3. Rueping, M. & Nachtsheim, B. J. A review of new developments in the Friedel-Crafts alkylation. From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem. 6, No 6 (2010).

  4. Olah, G. A., Reddy, V. P. & Prakash, G. K. S. in Kirk-Othmer Encyclopedia of Chemical Technology 5th edn, vol 12, 159–199 (Wiley, 2005).

    Google Scholar 

  5. Kocal, J. A., Vora, B. V. & Imai, T. Production of linear alkylbenzenes. Appl. Catal. A 221, 295–301 (2001).

    Article  CAS  Google Scholar 

  6. Vora, B. V., Pujado, P. R., Imai, T. & Fritsch, T. R. Recent advances in the production of detergent olefins and linear alkylbenzenes. Tenside Surfact. Det. 28, 287–294 (1991).

    CAS  Google Scholar 

  7. Perego, C. & Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal.Today 73, 3–22 (2002).

    Article  CAS  Google Scholar 

  8. Perego, C. & Ingallina, P. Combining alkylation and transalkylation for alkyl aromatic production. Green Chem. 6, 274–279 (2004).

    Article  CAS  Google Scholar 

  9. Dry, M. E. Present and future applications of the Fischer-Tropsch process. Appl. Catal. A 276, 1–3 (2004).

    Article  CAS  Google Scholar 

  10. Dry, M. E. The Fischer-Tropsch process: 1950–2000 Catal. Today 71, 227–241 (2002).

    Article  CAS  Google Scholar 

  11. Smiešková, A., Rojasová, E., Hudec, P. & Šabo, L. Aromatization of light alkanes over ZSM-5 catalysts. Influence of the particle properties of the zeolite. Appl. Catal. A 268, 235–240 (2004).

    Article  Google Scholar 

  12. Davis, B. H. Alkane dehydrocyclization mechanism. Catal. Today 53, 443–516 (1999).

    Article  CAS  Google Scholar 

  13. Meriaudeau, P. & Naccache, C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal. Rev. Sci. Eng. 39, 5–48 (1997).

    Article  CAS  Google Scholar 

  14. Davis, R. J. Aromatization on zeolite L-supported Pt clusters. Heterogen. Chem. Rev. 1, 41–53 (1994).

    CAS  Google Scholar 

  15. Arata, K., Hino, M. & Matsuhashi, H. Solid catalysts treated with anions. XXI. Zirconia-supported chromium catalyst for dehydrocyclization of hexane to benzene. Appl. Catal. A 100, 19–26 (1993).

    Article  CAS  Google Scholar 

  16. Spitsyn, V. I., Pirogova, G. N., Korosteleva, R. I. & Kalinina, G. E. Aromatization of hexane and heptane on technetium catalysts. Doklady Akademii Nauk SSSR 298, 149–151 [Phys. Chem.] (1988).

    CAS  Google Scholar 

  17. Hino, M. & Arata, K. Solid catalysts treated with anions. Dehydrocyclization of hexane to benzene over zirconia-supported chromia. J. Chem. Soc. Chem. Commun. 1355–1356 (1987).

  18. Isagulyants, G. V., Sterligov, O. D., Barkova, A. P., Mashinskii, V. I. & Kugucheva, E. E. Effect of modification of alumina-platinum catalysts on the composition of arenes formed in the process of dehydrogenation of higher n-paraffins. Neftekhimiya 27, 357–362 (1987).

    CAS  Google Scholar 

  19. Szebenyi, I. & Szechy, G. Acta. Chim. Hung. 98, 115 (1978).

    Article  CAS  Google Scholar 

  20. Gairbekov, T. M., Takaeva, M. I., Khadzhiev, S. N. & Manovyan, A. K. Cracking and aromatization of C6–10 n-alkanes and n-alkenes by a zeolite-containing catalyst. J. Appl. Chem. USSR 64, 2396–2400 (1991).

    CAS  Google Scholar 

  21. Komarewsky, V. I. & Riesz, C. H. Aromatization of octane and decane in the presence of nickel-alumina catalyst. J. Am. Chem. Soc. 61, 2524–2525 (1939).

    Article  CAS  Google Scholar 

  22. Vaisberg, K. S., Zhorov, Y. M., Panchenkov, G. M. & Rudyk, L. G. Formation of isomers of aromatic hydrocarbons during the dehydrocyclization of n-decane. Zh. Fiz. Khim. 44, 2630 (1970).

    CAS  Google Scholar 

  23. Shell. Dehydrocyclization of paraffins. NL patent 6715757 (1968).

  24. Matsumoto, T., Taube, D. J., Periana, R. A., Taube, H. & Yoshida, H. Anti-Markovnikov olefin arylation catalyzed by an iridium complex. J. Am. Chem. Soc. 122, 7414–7415 (2000).

    Article  CAS  Google Scholar 

  25. Oxgaard, J., Periana, R. A. & Goddard, W. A., III. Mechanistic analysis of hydroarylation catalysts. J. Am. Chem. Soc. 126, 11658–11665 (2004).

    Article  CAS  Google Scholar 

  26. Foley, N. A., Lee, J. P., Ke, Z., Gunnoe, T. B. & Cundari, T. R. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Acc. Chem. Res. 42, 585–597 (2009).

    Article  CAS  Google Scholar 

  27. McKeown, B. A., Foley, N. A., Lee, J. P. & Gunnoe, T. B. Hydroarylation of unactivated olefins catalyzed by platinum(II) complexes. Organometallics 27, 4031–4033 (2008).

    Article  CAS  Google Scholar 

  28. Luedtke, A. T. & Goldberg, K. I. Intermolecular hydroarylation of unactivated olefins catalyzed by homogeneous platinum complexes. Angew. Chem. Int. Ed. 47, 7694–7696 (2008).

    Article  CAS  Google Scholar 

  29. Peng, Y., Ma, X. & Schobert, H. H. Thermopyrolysis mechanism of n-alkylbenzene: experiment and molecular simulation. Prepr. Am. Chem. Soc. Div. Pet. Chem. 43, 368–372 (1998).

    CAS  Google Scholar 

  30. Eapen, K. C., Snyder, C. E., Jr., Gschwender, L., Dua, S. S. & Tamborski, C. Poly-n-alkylbenzene compounds. A class of thermally stable and wide liquid range fluids. Prepr. Am. Chem. Soc. Div. Pet. Chem. 29, 1053–1058 (1984).

    CAS  Google Scholar 

  31. Huang, Z. et al. Efficient heterogeneous dual catalyst systems for alkane metathesis. Adv. Synth. Catal. 352, 125–135 (2010).

    Article  CAS  Google Scholar 

  32. Huang, Z. et al. Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes. Adv. Synth. Catal. 351, 188–206 (2009).

    Article  CAS  Google Scholar 

  33. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  Google Scholar 

  34. Gupta, M., Hagen, C., Flesher, R. J., Kaska, W. C. & Jensen, C. M. A highly active alkane dehydrogenation catalyst: stabilization of dihydrido Rh and Ir complexes by a P-C-P pincer ligand. Chem. Commun. 2083–2084 (1996).

  35. Gupta, M., Hagen, C., Kaska, W. C., Cramer, R. E. & Jensen, C. M. Catalytic dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P-C-P pincer complex. J. Am. Chem. Soc. 119, 840–841 (1997).

    Article  CAS  Google Scholar 

  36. Gupta, M., Kaska, W. C. & Jensen, C. M. Catalytic dehydrogenation of ethylbenzene and THF by a dihydrido iridium P-C-P pincer complex. Chem. Commun. 461–462 (1997).

  37. Xu, W. et al. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. Chem. Commun. 2273–2274 (1997).

  38. Liu, F., Pak, E. B., Singh, B., Jensen, C. M. & Goldman, A. S. Dehydrogenation of n-alkanes catalyzed by iridium ‘pincer’ complexes. regioselective formation of alpha-olefins. J. Am. Chem. Soc. 121, 4086–4087 (1999).

    Article  CAS  Google Scholar 

  39. Liu, F. & Goldman, A. S. Efficient thermochemical alkane dehydrogenation and isomerization catalyzed by an iridium pincer complex. Chem. Commun. 655–656 (1999).

  40. Zhu, K., Achord, P. D., Zhang, X., Krogh-Jespersen, K. & Goldman, A. S. Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties. J. Am. Chem. Soc. 126, 13044–13053 (2004).

    Article  CAS  Google Scholar 

  41. Biswas, S. et al. in Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States INOR-302 (2008).

  42. Haenel, M. W. et al. Thermally stable homogeneous catalysts for alkane dehydrogenation. Angew. Chem. Int. Ed. 40, 3596–3600 (2001).

    Article  CAS  Google Scholar 

  43. Romero, P. E., Whited, M. T. & Grubbs, R. H. Multiple C-H activations of methyl tert-butyl ether at pincer iridium complexes: synthesis and thermolysis of Ir(I) Fischer carbenes. Organometallics 27, 3422–3429 (2008).

    Article  CAS  Google Scholar 

  44. Doledec, G. & Commereuc, D. Synthesis and properties of homogeneous models of the Re2O7/Al2O3 metathesis catalyst. J. Mol. Cat. A 161, 125–140 (2000).

    Article  CAS  Google Scholar 

  45. Jacobson, B. M., Arvanitis, G. M., Eliasen, C. A. & Mitelman, R. Ene reactions of conjugated dienes. 2. Dependence of rate on degree of hydrogen removed and s-cis or s-trans diene character. J. Org. Chem. 50, 194–201 (1985).

    Article  CAS  Google Scholar 

  46. Garg, N. & Lee, T. R. Regioselective bromomethylation of 1,2-dialkylbenzenes. Synlett 310–312 (1998).

Download references

Acknowledgements

The authors are grateful to the National Science Foundation (grant no. CHE-0650456) for financial support for this work through the Center for Enabling New Technologies through Catalysis (CENTC).

Author information

Authors and Affiliations

Authors

Contributions

R.A., B.P., M.F., W.S., M.B. and A.S.G. conceived and designed the experiments; R.A., B.P., M.F. and C.S. performed the experiments; R.A., B.P., M.F., C.S., M.B. and A.S.G. co-wrote the paper.

Corresponding authors

Correspondence to Maurice Brookhart or Alan S. Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, R., Punji, B., Findlater, M. et al. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes. Nature Chem 3, 167–171 (2011). https://doi.org/10.1038/nchem.946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing