Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event

Abstract

Carbonate cave deposits in India and China are assumed to record the intensity of monsoon precipitation, because the δ18O of the carbonate tracks the isotopic signature of precipitation. These records show spatially coherent variability throughout the last ice age and suggest that monsoon strength was altered during the millennial-scale climate variations known as Dansgaard–Oeschger events and during the Heinrich cooling events. Here we use a numerical climate model with an embedded oxygen-isotope model to assess what caused the shifts in the oxygen-isotope signature of precipitation during a climate perturbation designed to mimic a Heinrich event. Our simulations show that a sudden increase in North Atlantic sea-ice extent during the last glacial period leads to cooling in the Northern Hemisphere, reduced precipitation over the Indian basin and weakening of the Indian monsoon. The precipitation is isotopically heavier over India and the water vapour exported to China is isotopically enriched. Our model broadly reproduces the enrichment of δ18O over Northern India and East Asia evident in speleothem records during Heinrich events. We therefore conclude that changes in the δ18O of cave carbonates associated with Heinrich events reflect changes in the intensity of Indian rather than East Asian monsoon precipitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annual averaged temperature and precipitation difference between the H1 and LGM.
Figure 2: δ18Op and summer precipitation difference between the H1 and LGM simulations.
Figure 3: δ18Op and summer-precipitation difference between the H1 sensitivity experiments and LGM simulation.

Similar content being viewed by others

References

  1. Hemming, S. R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    Article  Google Scholar 

  2. Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  3. Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360, 245–249 (1992).

    Article  Google Scholar 

  4. Overpeck, J., Anderson, D., Trumbore, S., Warren, P. & Prell, W. The southwest Indian monsoon over the last 18000 years. Clim. Dyn. 12, 213–224 (1996).

    Article  Google Scholar 

  5. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article  Google Scholar 

  6. Chiang, J. C. H., Biasutti, M. & Battisti, D. S. Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18, 1094 (2003).

    Article  Google Scholar 

  7. Jin, L., Chen, F., Ganopolski, A. & Claussen, M. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res.-Atmos. 112, D06117 (2007).

    Article  Google Scholar 

  8. Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Clim. 23, 5457–5475 (2004).

    Article  Google Scholar 

  9. Wang, Y. J. et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).

    Article  Google Scholar 

  10. Zhou, H. et al. Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quat. Res. 69, 306–315 (2008).

    Article  Google Scholar 

  11. Yuan, D. X. et al. Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science 304, 575–578 (2004).

    Article  Google Scholar 

  12. Sinha, A. et al. Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød. Geology 33, 813–818 (2005).

    Article  Google Scholar 

  13. Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  14. Cheng, H. et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217–220 (2006).

    Article  Google Scholar 

  15. Cheng, H. Ice age terminations. Science 326, 248–252 (2009).

    Article  Google Scholar 

  16. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article  Google Scholar 

  17. Breitenbach, S. F. M. et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. 292, 212–220 (2010).

    Article  Google Scholar 

  18. Cai, Y. et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology 34, 621–624 (2009).

    Article  Google Scholar 

  19. Kelly, M. J. et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 20–38 (2006).

    Article  Google Scholar 

  20. Johnson, K. R., Ingram, B. L., Sharp, W. D. & Zhang, P. Z. East Asian summer monsoon variability during Marine Isotope Stage 5 based on speleothem delta O-18 records from Wanxiang Cave, central China. Palaeogr. Palaeoclimatol. Paleoecol. 236, 5–19 (2006).

    Article  Google Scholar 

  21. Dayem, K. E., Molnar, P., Battisti, D. S. & Roe, G. H. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet. Sci. Lett. 295, 219–230 (2010).

    Article  Google Scholar 

  22. Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., Mckenzie, J. A. & Savin, S.) 1–36 (AGU monograph 78, 1993).

    Google Scholar 

  23. LeGrande, A. N. & Schmidt, G. A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim. Past 5, 441–455 (2009).

    Article  Google Scholar 

  24. Otto-Bliesner, B. L. et al. Last Glacial Maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2009).

    Article  Google Scholar 

  25. Bitz, C. M., Chiang, J. C. H., Cheng, W. & Barsugli, J. J. Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys. Res. Lett. 34, L07708 (2007).

    Article  Google Scholar 

  26. Skinner, L. C. Revisiting the absolute calibration of the Greenland ice-core age-scales. Clim. Past 4, 295–302 (2008).

    Article  Google Scholar 

  27. Collins, et al. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Clim. 19, 2144–2161 (2006).

    Article  Google Scholar 

  28. Noone, D. & Sturm, C. Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (Springer, 2009).

    Google Scholar 

  29. Li, C., Battisti, D. S., Schrag, D. P. & Tziperman, E. Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett. 32, L19702 (2005).

    Google Scholar 

  30. Friedman, I. & O’Neil, J. R. in Data of Geochemistry 6th edn (ed. Fleischer, M.) (Geol. Surv. Prof. Pap. U.S., 1977).

    Google Scholar 

  31. Ding, Y. & Chan, J. C. L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 89, 117–142 (2005).

    Article  Google Scholar 

  32. Sun, Y., An, Z., Clemens, S. C., Bloemendal, J. & Vandenberghe, J. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth Planet. Sci. Lett. 297, 525–535 (2010).

    Article  Google Scholar 

  33. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57 (1998).

    Article  Google Scholar 

  34. Altabet, M. A., Higginson, M. J. & Murray, D. W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 415, 159–162 (2002).

    Article  Google Scholar 

  35. Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. & Al-Subbary, A. A. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 1365–1367 (2003).

    Article  Google Scholar 

  36. Lewis, S. C., LeGrande, A. N., Kelley, M. & Schmidt, G. A. Water vapour source impacts on oxygen isotope variability in tropical precipitation. Clim. Past 6, 325–343 (2010).

    Article  Google Scholar 

  37. Swingedouw, D., Mignot, J., Braconnot, P., Mosquet, E. & Kageyama, M. Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J. Clim. 22, 6377–6403 (2009).

    Article  Google Scholar 

  38. Bordoni, S. & Schneider, T. Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci. 67, 1643–1654 (2010).

    Article  Google Scholar 

  39. Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–223 (2010).

    Article  Google Scholar 

  40. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the tibetan plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).

    Article  Google Scholar 

  41. Noone, D. & Simmonds, I. Annular variations in moisture transport mechanisms and the abundance of delta O-18 in Antarctic snow. J. Geophys. Res.-Atmos. 107, 4742 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the ARCTREC and DecCen projects, funded by the Norwegian Research Council. D.S.B. was supported by the NSF EAR program (0908558). The authors would like to thank D. Noone for providing the isotope module for CAM3 and J. Bader and M. d.S. Mesquita for discussions and suggestions. This is publication no A323 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Contributions

F.S.R.P. and D.S.B. conceived the study, analysed the results and wrote the manuscript. F.S.R.P. designed and carried out the experiments, and processed the model results. K.H.N. analysed the results and edited the manuscript. C.M.B. wrote the tagging code in the isotope module and set up CAM3 to run in LGM with isotopes and tagging.

Corresponding author

Correspondence to Francesco S. R. Pausata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pausata, F., Battisti, D., Nisancioglu, K. et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geosci 4, 474–480 (2011). https://doi.org/10.1038/ngeo1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing