Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity

Abstract

Volcanism on early Earth should have had an impact on atmospheric chemistry, but that impact can be challenging to reconstruct. The isotopic composition of sulphur contained in rocks deposited more than 2.45 billion years (Gyr) ago shows both mass-dependent (as denoted by δ34S) and mass-independent (Δ33S) isotopic fractionation. This sulphur is predominantly in the form of suphides. These sulphides show a positive correlation between δ34S and Δ33S between 4.0 and 2.45 Gyr ago. Sulphates deposited episodically between about 3.5 and 3.2 Gyr ago indicate a more homogeneous sulphur reservoir and show no correlation to the sulphide trend. Here we report sulphur isotope values of sulphide from volcanic ash layers in the 3.2-Gyr-old Mapepe Formation of South Africa. We find a δ34S–Δ33S relationship that deviates from previous sulphide isotope records and instead overlaps with the range of values reported for sulphates. Coexisting sulphates and sulphides of a similar age found in Australia and India show a similar array of δ34S–Δ33S values. We suggest that the occurrence of this δ34S–Δ33S array reflects widespread, ultraviolet-light-triggered photodissociation of sulphur dioxide that was released into the atmosphere by short-lived but intense bursts of subaerial volcanic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Barberton Barite Drilling Project (BBDP).
Figure 2: Δ33S–δ34S distribution of Archaean sulphides and sulphates.
Figure 3: Formation of sulphate–sulphide deposits in the early Archaean.
Figure 4: The Archaean sulphur cycle.

Similar content being viewed by others

References

  1. Farquhar, J., Bao, H. & Thiemens, M. H. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  Google Scholar 

  2. Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).

    Article  Google Scholar 

  3. Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006).

    Article  Google Scholar 

  4. Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the archean mass-independent sulfur isotope record. Science 204–207 (2010).

  5. Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    Article  Google Scholar 

  6. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  Google Scholar 

  7. Ueno, Y. et al. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox. Proc. Natl Acad. Sci. USA 106, 14784–14789 (2009).

    Article  Google Scholar 

  8. Lyons, J. R. Mass-independent fractionation of sulfur isotopes by isotope-selective photodissociation of SO2. Geophys. Res. Lett. 34, L22811 (2007).

    Article  Google Scholar 

  9. Lyons, J. R. Atmospherically-derived mass-independent sulfur isotope signatures, and incorporation into sediments. Chem. Geol. 267, 164–174 (2009).

    Article  Google Scholar 

  10. Shen, Y., Buick, R. & Canfield, D. E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001).

    Article  Google Scholar 

  11. Shen, Y., Farquhar, J., Masterson, A. L., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).

    Article  Google Scholar 

  12. Ueno, Y., Ono, S., Rumble, D. I. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser formation: New evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    Article  Google Scholar 

  13. Runnegar, B., Dollase, W. A., Ketcham, R. A., Colbert, M. & Carlson, W. D. Early Archaean sulfates from Western Australia first formed as hydrothermal barites not gypsum evaporites. Geol. Soc. Am. Abs. Vol. 33, 404 (2001).

    Google Scholar 

  14. Bao, H., Rumble, D. III & Lowe, D. R. The five stable isotope compositions of fig tree barites: Implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim. Cosmochim. Acta 71, 4868–4879 (2007).

    Article  Google Scholar 

  15. Philippot, P. et al. Early Archean microorganisms preferred elemental sulfur, not sulfate. Science 317, 1534–1537 (2007).

    Article  Google Scholar 

  16. Wacey, D., McLoughlin, N., Whitehouse, M. J. & Kilburn, M. R. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology 38, 1115–1118 (2010).

    Article  Google Scholar 

  17. Golding, S. D. et al. in Earliest Life on Earth: Habitats, Environments and Methods of Detection (eds Golding, S. D. & Glikson, M.) 15–49 (Springer, 2011).

    Book  Google Scholar 

  18. Huston, D. L. & Logan, G. A. Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth Planet. Sci. Lett. 220, 41–55 (2004).

    Article  Google Scholar 

  19. Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J. Geophys. Res. 106, 32829–32839 (2001).

    Article  Google Scholar 

  20. Kamber, B. S. & Whitehouse, M. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5, 5–17 (2007).

    Article  Google Scholar 

  21. Masterson, A. L., Farquhar, J. & Wing, B. Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: Pressure and third body effects. Earth Planet. Sci. Lett. 301, 253–260 (2011).

    Article  Google Scholar 

  22. Heinrichs, T. K. & Reimer, T. O. A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Econ. Geol. 72, 1426–1441 (1977).

    Article  Google Scholar 

  23. Lowe, D. R. & Nocita, B. W. in Geologic Evolution of the Barberton Greenstone Belt, South Africa, Vol.329 (eds Lowe, D. R. & Byerly, G. R.) 233–258 (Geol. Soc. Am. Spec., 1999).

    Google Scholar 

  24. Philippot, P. et al. Drilling Archean stratigraphic horizons: Pilbara Craton, Western Australia and Barberton Belt, South Africa. C. R. Palevol. 8, 649–663 (2009).

    Article  Google Scholar 

  25. Mojzsis, S. J. Sulfur on early Earth. Earth’s Oldest Rocks, Vol.15 923–970 (Elsevier, 2007).

    Chapter  Google Scholar 

  26. Hoering, T. C. The isotopic composition of bedded barites from the Archean of southern India. J. Geol. Soc. India 34, 461–466 (1989).

    Google Scholar 

  27. Deb, M., Hoefs, J. & Baumann, A. Isotopic composition of two Precambrian stratiform barite deposits from the Indian shield. Geochim. Cosmochim. Acta 55, 303–308 (1991).

    Article  Google Scholar 

  28. Lowe, D. R. & Byerly, G. R. Geologic Evolution of the Barberton Greenstone Belt, South Africa (The Geological Society of America, 1999).

    Google Scholar 

  29. Lowe, D. R. & Byerly, G. R. Early Archean silicate spherules of probable impact origin, South Africa and Western Australia. Geology 14, 83–86 (1986).

    Article  Google Scholar 

  30. Xie, X., Byerly, G. R. & Ferell, R. E. Jr IIb trioctahedral chlorite from the Barberton greenstone belt: Crystal structure and rock composition constraints with implications to geothermometry. Contr. Mineral. Petrol. 126, 275–291 (1997).

    Article  Google Scholar 

  31. Tice, M. M., Bostick, B. C. & Lowe, D. R. Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32, 37–40 (2004).

    Article  Google Scholar 

  32. Kröner, A., Byerly, G. R. & Lowe, D. R. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet. Sci. Lett. 103, 41–54 (1991).

    Article  Google Scholar 

  33. Van Kranendonk, M., Philippot, P., Lepot, K., Bodorokos, S. & Pirajno, F. Geological setting of Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambr. Res. 167, 93–124 (2008).

    Article  Google Scholar 

  34. Partridge, M. A., Golding, S. D., Baudlys, K. A. & Young, E. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41–49 (2008).

    Article  Google Scholar 

  35. Ono, S., Kaufman, A. J., Farquhar, J., Sumners, D. Y. & Beukes, N. J. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambr. Res. 169, 58–67 (2009).

    Article  Google Scholar 

  36. Bao, H., Sun, T., Kohl, I. & Peng, Y. Early Archean microorganisms preferred elemental sulfur, sulfate, both, or neither. Science 319, 1336b (2008).

    Article  Google Scholar 

  37. Johnston, D. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 106, 161–183 (2011).

    Article  Google Scholar 

  38. Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. Review: Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 1–38 (2007).

    Article  Google Scholar 

  39. Isley, A. E. & Abbott, D. H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15461–15477 (1999).

    Article  Google Scholar 

  40. Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65–75 (2009).

    Article  Google Scholar 

  41. Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. & Farquhar, J. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29–40 (2008).

    Article  Google Scholar 

  42. Ono, S., Beukes, N. J. & Rumble, D. III Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, GriqualandWest Basin, South Africa. Precambr. Res. 169, 48–59 (2009).

    Article  Google Scholar 

  43. Ono, S., Wing, B., Johnston, D., Farquhar, J. & Rumble, D. III Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238–2252 (2006).

    Article  Google Scholar 

  44. Ono, S., Beukes, N. J., Rumble, D. III & Fogel, M. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. South African J. Sci. 109, 97–98 (2006).

    Google Scholar 

  45. Papineau, D. & Mojzsis, S. J. Mass-independent fractionation of sulfur isotopes in sulphides from the pre-3370 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4, 227–238 (2006).

    Article  Google Scholar 

  46. Papineau, D., Mojzsis, S. J., Coath, C. D., Karhu, J. A. & McKeegan, K. D. Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim. Cosmochim. Acta 69, 5033–5060 (2005).

    Article  Google Scholar 

  47. Mojzsis, S. J., Coath, C. D., Greenwood, J. P., McKeegan, K. D. & Harrison, T. M. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. Cosmochim. Acta 67, 1635–1658 (2003).

    Article  Google Scholar 

  48. Hu, G., Rumble, D. III & Pei-Ling, W. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta 67, 3101–3117 (2003).

    Article  Google Scholar 

  49. Cates, N. L. & Mojzsis, S. J. Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim. Cosmochim. Acta 70, 4229–4257 (2006).

    Article  Google Scholar 

  50. Whitehouse, M. J., Kamber, B. S., Fedo, C. M. & Lepland, A. Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chem. Geol. 222, 112–131 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

P.P. acknowledges support from the Centre National de la Recherche Scientifique, the Institut de Physique du Globe de Paris and the African Earth Network Observatory for carrying out the BBDP and from grants from the ANR (eLIFE and eLIFE2) and Labex UnivEarths. We thank D. Mangin and O. Boudouma for assistance with IMS and scanning electron microscopy, D. Rumble for corrections on an early version of the manuscript and E. Muller for providing Supplementary Fig. S6. This is Institut de Physique du Globe de Paris contribution number 3302.

Author information

Authors and Affiliations

Authors

Contributions

P.P. and M.v.Z. carried out the BBDP. P.P. carried out the logging of the BBDP core and selected the samples for SIMS and SEM analyses. P.P. and M.v.Z. collected SIMS data. P.P. collected SEM data. P.P., M.v.Z. and C.R-B. analysed the results and wrote the paper.

Corresponding author

Correspondence to Pascal Philippot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 78434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippot, P., van Zuilen, M. & Rollion-Bard, C. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nature Geosci 5, 668–674 (2012). https://doi.org/10.1038/ngeo1534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing