Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores

Abstract

Nitrogen fixation, the reaction that transforms atmospheric nitrogen into bioavailable ammonia and is responsible for the supply of nitrogen to Earth’s ecosystems, is mediated by the enzyme nitrogenase. This reaction requires molybdenum (Mo) or vanadium (V) in addition to iron (Fe) (refs 1, 2). Therefore, the availability of these trace metals may control the Earth’s nitrogen cycle3,4. Many bacteria release strong iron-binding compounds (siderophores) for iron acquisition5,6, but the effect of these compounds on Mo and V availability to nitrogen-fixing organisms is not well understood. Here, we show that the siderophores produced in cultures of Azotobacter vinelandii while fixing atmospheric nitrogen under limitation by Mo or V form strong complexes with molybdate and vanadate, and that these complexes are available for uptake. We also show that addition of these siderophores rapidly reverses the effect of other natural binding compounds that make Mo and V unavailable for uptake. Our results resolve the long-standing debate regarding the existence of bacterial ‘molybdophores’7,8,9, as well as the corollary question regarding ‘vanadophores’. We conclude that the production of strong binding compounds may be a widespread strategy for metal acquisition by bacteria, implying that the availability of Mo and V may be critical for the nitrogen cycle of terrestrial ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of Mo, Fe and V on the growth and production of catechol siderophores by A. vinelandii under diazotrophic conditions.
Figure 2: Complexation of Mo, V and Fe by catechol siderophores in cultures of A. vinelandii (strain OP).
Figure 3: Short-term uptake of the Mo and V complexes with protochelin, azotochelin and DFB by A. vinelandii.
Figure 4: Effect of azotochelin on V uptake in the presence of other vanadium ligands by A. vinelandii (mutant strain CA11.70).

Similar content being viewed by others

References

  1. Eady, R. E. Structure-function relationships of the alternative nitrogenases. Chem. Rev. 96, 3013–3030 (1996).

    Article  Google Scholar 

  2. Joerger, R. D. & Bishop, P. E. Bacterial alternative nitrogen fixation systems. Crit. Rev. Microbiol. 16, 1–14 (1988).

    Article  Google Scholar 

  3. Kustka, A., Sanuda-Wilhelmy, S., Carpenter, E. J., Capone, D. & Raven, J. A. A revised estimate of the iron use efficiency of nitrogen fixation, with special reference to the marine N2 fixing cyanobacterium, Trichodesmium spp. (Cyanophyta). J. Phycol. 39, 12–25 (2003).

    Article  Google Scholar 

  4. Hungate, B. A. et al. CO2 elicits long-term decline in nitrogen fixation. Science 304, 1291 (2004).

    Article  Google Scholar 

  5. Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science 281, 207–210 (1998).

    Article  Google Scholar 

  6. Stintzi, A., Barnes, C., Xu, J. & Raymond, K. N. Microbial iron transport via siderophore shuttle: A membrane ion transport paradigm. Proc. Natl Am. Soc. 97, 10691–10696 (2000).

    Article  Google Scholar 

  7. Liermann, L. J., Guynn, R. L., Anbar, A. & Brantley, S. L. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem. Geol. 220, 285–302 (2005).

    Article  Google Scholar 

  8. Cornish, A. S. & Page, W. J. Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol. 66, 1580–1586 (2000).

    Article  Google Scholar 

  9. Page, W. J. & von Tigerstrom, M. Iron- and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151, 237–242 (1982).

    Google Scholar 

  10. Sunda, W. G., Price, N. M. & Morel, F. M. M. in Algal Culturing Techniques (ed. Anderson, R.) 35–64 (Elsevier, Burlington, 2005).

    Google Scholar 

  11. Rose, A. L. & Waite, T. D. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol. 37, 3897–3903 (2003).

    Article  Google Scholar 

  12. Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D. & Bishop, P. E. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 171, 1075–1086 (1989).

    Article  Google Scholar 

  13. Neilands, J. B. Microbial iron compounds. Ann. Rev. Biochem. 50, 715–731 (1981).

    Article  Google Scholar 

  14. Bellenger, J.-P. et al. Complexation of oxoanions and cationic metals by the biscatecholate siderophore azotochelin. J. Biol. Inorg. Chem. 12, 367–376 (2007).

    Article  Google Scholar 

  15. Duhme, A.-K., Hider, R. C., Naldrett, M. J. & Pau, R. N. The stability of the molybdenum-azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. J. Biol. Inorg. Chem. 3, 520–526 (1998).

    Article  Google Scholar 

  16. Khodr, H. H., Hider, R. C. & Duhme, A.-K. The iron-binding properties of aminochelin, the mono(catecholamine) siderophore of Azotobacter vinelandii. J. Biol. Inorg. Chem. 7, 891–896 (2002).

    Article  Google Scholar 

  17. Cornish, A. S. & Page, W. J. The catecholate siderophores of Azotobacter vinelandii: Their affinity for iron and role in oxygen stress management. Microbiology 144, 1747–1754 (1998).

    Article  Google Scholar 

  18. Kraemer, S. M. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66, 3–18 (2004).

    Article  Google Scholar 

  19. Pau, R. N. & Lawson, D. M. in Metal Ions in Biological Systems: Molybdenum and Tungsten: Their Roles in Biological Processes (eds Sigel, A. & Sigel, H.) 31–74 (Dekker, Basel, 2002).

    Google Scholar 

  20. Siemann, S., Schneider, K., Oley, M. & Muller, A. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 42, 3846–3857 (2003).

    Article  Google Scholar 

  21. Kiss, T. & Farkas, E. Metal-binding ability of Desferrioxamine B. J. Incl. Phenom. Mol. Recognit. Chem. 32, 385–403 (1998).

    Article  Google Scholar 

  22. Pratte, B. S. & Thiel, T. High-affinity vanadate transport system in the cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 188, 464–468 (2006).

    Article  Google Scholar 

  23. Kim, H. J. et al. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305, 1612–1615 (2004).

    Article  Google Scholar 

  24. Sparks, D. L. in Metal and Oxyanion Sorption on Naturally Occurring Oxide and Clay Mineral Surfaces (ed. Grassian, V.) (Taylor and Francis, Boca Raton, 2005).

    Book  Google Scholar 

  25. Crews, T. E., Farrington, H. & Vitousek, P. M. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3, 386–395 (2000).

    Article  Google Scholar 

  26. Alberic, P. Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnol. Oceanogr. 45, 1088–1096 (2000).

    Article  Google Scholar 

  27. Essen, S. A., Bylund, D., Holmstrom, S. J. M., Moberg, M. & Lundstrom, U. S. Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19, 269–282 (2006).

    Article  Google Scholar 

  28. Silvester, W. B. Molybdenum limitation of asymbiotic nitrogen fixation in forests of pacific Northwest America. Soil Biol. Biochem. 21, 283–289 (1989).

    Article  Google Scholar 

  29. Gupta, U. (ed.) Molybdenum in Agriculture (Cambridge Univ. Press, Cambridge, 1997).

Download references

Acknowledgements

The authors wish to thank S. Brantley, T. M. Loveless and P. E. Bishop for providing the wild-type strain OP and the mutant strains CA11.70 and F196. We are also grateful to François M. M. Morel for useful discussions and his support throughout this work. We thank D. Little and E. Chan for their help with mass spectrometry. This work was supported by grants from the NSF (CHE-0221978, Center for Environmental Bioinorganic Chemistry and DEB-0614116), as well as fellowships from the French Department of Education to J.P.B and from the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry to T.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. L. Kraepiel.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellenger, J., Wichard, T., Kustka, A. et al. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geosci 1, 243–246 (2008). https://doi.org/10.1038/ngeo161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing