Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of BCR affinity in T cell–dependent antibody responses in vivo

Abstract

Antibody affinity for antigen is believed to govern B lymphocyte selection during T-dependent immune responses. To examine antibody affinity in T cell–dependent immune responses, we compared mice that carry targeted VHB1-8 antibody genes with high or low antigen-binding affinity. We found that high- and low-affinity B cells had the same intrinsic capacity to respond to antigen, but in experiments where limiting numbers of high- and low-affinity B cells were mixed in wild-type recipient mice, only the high-affinity B cells accumulated in germinal centers (GCs). In GCs, high-affinity B cells accumulated fewer VH somatic mutations than low affinity B cells. This effect was due to selections as the frequency of mutation in noncoding immunoglobulin gene DNA is the same in high- and low- affinity B cells. Thus, B cells recruited to the GC appeared to undergo a fixed mutation program, regardless of initial B cell receptor affinity. We conclude that in addition to the selection that occurs in GCs, stringent selection for high-affinity clones is also imposed in the early stages of the T cell–dependent immune response in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NP-specific antibody responses.
Figure 2: GC response, as measured by flow cytometry.
Figure 3: Immunohistological staining of GCs.
Figure 4: Somatic mutation in B1-8hi and B1-8lo day 25 GC B cells.
Figure 5: Clonal selection during T-dependent immune responses.
Figure 6: Marginal zone B cell development.

Similar content being viewed by others

References

  1. Jacob, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176, 679–687 (1992).

    Article  CAS  Google Scholar 

  2. MacLennan, I.C., Liu, Y.J. & Johnson, G.D. Maturation and dispersal of B-cell clones during T cell-dependent antibody responses. Immunol. Rev. 126, 143–161 (1992).

    Article  CAS  Google Scholar 

  3. Jacob, J., Kassir, R. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J. Exp. Med. 173, 1165–1175 (1991).

    Article  CAS  Google Scholar 

  4. Liu, Y.J., Zhang, J., Lane, P.J., Chan, E.Y. & MacLennan, I.C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  Google Scholar 

  5. Berek, C., Griffiths, G.M. & Milstein, C. Molecular events during maturation of the immune response to oxazolone. Nature 316, 412–418 (1985).

    Article  CAS  Google Scholar 

  6. Cumano, A. & Rajewsky, K. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO J. 5, 2459–2468 (1986).

    Article  CAS  Google Scholar 

  7. Kocks, C. & Rajewsky, K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu. Rev. Immunol. 7, 537–559 (1989).

    Article  CAS  Google Scholar 

  8. Clarke, S.H. et al. V region gene usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J. Immunol. 144, 2795–2801 (1990).

    CAS  PubMed  Google Scholar 

  9. Griffiths, G.M., Berek, C., Kaartinen, M. & Milstein, C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275 (1984).

    Article  CAS  Google Scholar 

  10. Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96, 23–41 (1987).

    Article  CAS  Google Scholar 

  11. McKean, D. et al. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 81, 3180–3184 (1984).

    Article  CAS  Google Scholar 

  12. Kocks, C. & Rajewsky, K. Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. Proc. Natl. Acad. Sci. USA 85, 8206–8210 (1988).

    Article  CAS  Google Scholar 

  13. Dal Porto, J.M., Haberman, A.M., Shlomchik, M.J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373–5381 (1998).

    CAS  PubMed  Google Scholar 

  14. Allen, D. et al. Timing, genetic requirements and functional consequences of somatic hypermutation during B-cell development. Immunol. Rev. 96, 5–22 (1987).

    Article  CAS  Google Scholar 

  15. Weiss, U. & Rajewsky, K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172, 1681–1689 (1990).

    Article  CAS  Google Scholar 

  16. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  Google Scholar 

  17. Allen, D., Simon, T., Sablitzky, F., Rajewsky, K. & Cumano, A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 7, 1995–2001 (1988).

    Article  CAS  Google Scholar 

  18. Rogozin, I.B. & Kolchanov, N.A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochem. Biophys. Acta 1171, 11–18 (1992).

    CAS  PubMed  Google Scholar 

  19. Betz, A.G., Rada, C., Pannell, R., Milstein, C. & Neuberger, M.S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc. Natl. Acad. Sci. USA 90, 2385–2388 (1993).

    Article  CAS  Google Scholar 

  20. Eisen, H.N. & Siskind, G.W. Variations in affinities of antibodies during the immune response. Biochemistry 3, 996–1008 (1964).

    Article  CAS  Google Scholar 

  21. Jerne, N.K. A study of avidity based on rabbit skin responses to diptheria toxin antitoxin mixtures. Acta Pathol. Microbiol. Scand. 87 (Suppl.) 1–183 (1951).

    CAS  Google Scholar 

  22. Siskind, G.W. & Benacerraf, B. Cell selection by antigen in the immune response. Adv. Immunol. 10, 1–50 (1969).

    Article  CAS  Google Scholar 

  23. French, D.L., Laskov, R. & Scharff, M.D. The role of somatic hypermutation in the generation of antibody diversity. Science 244, 1152–1157 (1989).

    Article  CAS  Google Scholar 

  24. Weiss, U., Zoebelein, R. & Rajewsky, K. Accumulation of somatic mutants in the B cell compartment after primary immunization with a T cell-dependent antigen. Eur. J. Immunol. 22, 511–517 (1992).

    Article  CAS  Google Scholar 

  25. Shih, T.-A.Y., Roederer, M. & Nussenzweig, M.C. Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nature Immunol. 3, 399–406 (2002)

    Article  CAS  Google Scholar 

  26. Nagaoka, H., Gonzalez-Aseguinolaza, G., Tsuji, M. & Nussenzweig, M.C. Immunization and infection change the number of recombination activating gene (RAG)-expressing B cells in the periphery by altering immature lymphocyte production. J. Exp. Med. 191, 2113–2120 (2000).

    Article  CAS  Google Scholar 

  27. Smith, K.G., Nossal, G.J. & Tarlinton, D.M. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl. Acad. Sci. USA 92, 11628–11632 (1995).

    Article  CAS  Google Scholar 

  28. Watanabe, D., Suda, T. & Nagata, S. Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. Int. Immunol. 7, 1949–1956 (1995).

    Article  CAS  Google Scholar 

  29. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  Google Scholar 

  30. Toellner, K.-M. et al. Low-level Hypermutation in T cell–independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med. 195, 383–389 (2002).

    Article  CAS  Google Scholar 

  31. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  32. Rada, C., Ehrenstein, M.R., Neuberger, M.S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  Google Scholar 

  33. Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–307 (1993).

    Article  CAS  Google Scholar 

  34. Lalor, P.A., Nossal, G.J., Sanderson, R.D. & McHeyzer-Williams, M.G. Functional and molecular characterization of single (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 22, 3001–3011 (1992).

    Article  CAS  Google Scholar 

  35. McHeyzer-Williams, M.G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    Article  CAS  Google Scholar 

  36. Ziegner, M., Steinhauser, G. & Berek, C. Development of antibody diversity in single germinal centers: selective expansion of high-affinity variants. Eur. J. Immunol. 24, 2393–2400 (1994).

    Article  CAS  Google Scholar 

  37. Liu, Y.J., Oldfield, S. & MacLennan, I.C. Memory B cells in T cell–dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18, 355–362 (1988).

    Article  CAS  Google Scholar 

  38. Neuberger, M.S. et al. Memory in the B-cell compartment: antibody affinity maturation. Phil. Trans. R. Soc. Lond. B 355, 357–360 (2000).

    Article  CAS  Google Scholar 

  39. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  40. Kroese, F.G., Wubbena, A.S., Seijen, H.G. & Nieuwenhuis, P. Germinal centers develop oligoclonally. Eur. J. Immunol. 17, 1069–1072 (1987).

    Article  CAS  Google Scholar 

  41. Bachmann, M.F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).

    Article  CAS  Google Scholar 

  42. Batista, F.D. & Neuberger, M.S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).

    Article  CAS  Google Scholar 

  43. Dintzis, H.M., Dintzis, R.Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA 73, 3671–3675 (1976).

    Article  CAS  Google Scholar 

  44. Fischer, M.B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    Article  CAS  Google Scholar 

  45. Foote, J. & Eisen, H.N. Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl. Acad. Sci. USA 92, 1254–1256 (1995).

    Article  CAS  Google Scholar 

  46. Foote, J. & Milstein, C. Kinetic maturation of an immune response. Nature 352, 530–2 (1991).

    Article  CAS  Google Scholar 

  47. Kouskoff, V. et al. Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J. Exp. Med. 188, 1453–1464 (1998).

    Article  CAS  Google Scholar 

  48. Roost, H.P. et al. Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proc. Natl. Acad. Sci. USA 92, 1257–1261 (1995).

    Article  CAS  Google Scholar 

  49. Batista, F.D. & Neuberger, M.S. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 19, 513–520 (2000).

    Article  CAS  Google Scholar 

  50. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Besmer and members of the Nussenzweig lab for helpful comments on the manuscript and Nai-Ying Zheng for histology. We are also grateful to P. Wilson for help with analysis of somatic hypermutation. Supported by NIH MSTP grant GM07739 (to T. Y. S.) and HHMI and grants from the Leukemia Society and NIH (to M. C. N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel C. Nussenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang Shih, TA., Meffre, E., Roederer, M. et al. Role of BCR affinity in T cell–dependent antibody responses in vivo. Nat Immunol 3, 570–575 (2002). https://doi.org/10.1038/ni803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing