Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles

Abstract

Recently activated, but not resting, CD4+ T cells express CD154, providing costimulatory signals to B cells and antigen-presenting cells (APCs). Therefore, de novo CD154 expression after stimulation identifies antigen-specific CD4+ T cells. Previous assays were limited by the transient nature of surface CD154 expression; we overcame this by including fluorescently conjugated CD154-specific antibody during stimulation. Our assay is fully compatible with intracellular cytokine staining, and can be used for stimulations as long as 24 h. Notably, it is nonlethal, providing a means to purify viable antigen-specific CD4+ T cells for further analysis. Using this assay, we found that stimulated cells expressing tumor necrosis factor (TNF)-α, interleukin (IL)-2 or interferon (IFN)-γ were predominantly CD154+. Furthermore, some cells expressing none of these cytokines also expressed CD154, suggesting that CD154 marks cells with other effector functions. For vaccine- or pathogen-specific responses, we found substantial heterogeneity in expression of CD154 and cytokines, suggesting previously unrecognized diversity in abilities of responding cells to stimulate APCs through CD40.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optimization of CD154 detection.
Figure 2: Relationship between CD154 and cytokine expression.
Figure 3: Characterization of antigen-specific T cells.
Figure 4: Viable isolation of CD4+CD154+ T cells.

Similar content being viewed by others

References

  1. Lyerly, H.K. Quantitating cellular immune responses to cancer vaccines. Semin. Oncol. 30, 9–16 (2003).

    Article  CAS  Google Scholar 

  2. Maino, V.C. & Picker, L.J. Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression. Cytometry 34, 207–215 (1998).

    Article  CAS  Google Scholar 

  3. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 92, 1921–1925 (1995).

    Article  CAS  Google Scholar 

  4. Klenerman, P., Cerundolo, V. & Dunbar, P.R. Tracking T cells with tetramers: new tales from new tools. Nat. Rev. Immunol. 2, 263–272 (2002).

    Article  CAS  Google Scholar 

  5. Betts, M.R., Casazza, J.P. & Koup, R.A. Monitoring HIV-specific CD8+ T cell responses by intracellular cytokine production. Immunol. Lett. 79, 117–125 (2001).

    Article  CAS  Google Scholar 

  6. Khan, S.S., Smith, M.S., Reda, D., Suffredini, A.F. & McCoy, J.P. Jr. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry 61, 35–39 (2004).

    Article  Google Scholar 

  7. Perfetto, S.P., Chattopadhyay, P.K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    Article  CAS  Google Scholar 

  8. Brines, R.D. & Klaus, G.G. Polyclonal activation of immature B cells by preactivated T cells: the role of IL-4 and CD40 ligand. Int. Immunol. 5, 1445–1450 (1993).

    Article  CAS  Google Scholar 

  9. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  10. van Kooten, C. & Banchereau, J. CD40–CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    Article  CAS  Google Scholar 

  11. Roy, M., Waldschmidt, T., Aruffo, A., Ledbetter, J.A. & Noelle, R.J. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J. Immunol. 151, 2497–2510 (1993).

    CAS  PubMed  Google Scholar 

  12. Yellin, M.J. et al. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152, 598–608 (1994).

    CAS  PubMed  Google Scholar 

  13. Skov, S., Bonyhadi, M., Odu, N. & Ledbetter, J.A. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J. Immunol. 164, 3500–3505 (2000).

    Article  CAS  Google Scholar 

  14. Betts, M.R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78 (2003).

    Article  CAS  Google Scholar 

  15. Cosulich, M.E., Rubartelli, A., Risso, A., Cozzolino, F. & Bargellesi, A. Functional characterization of an antigen involved in an early step of T-cell activation. Proc. Natl. Acad. Sci. USA 84, 4205–4209 (1987).

    Article  CAS  Google Scholar 

  16. De Rosa, S.C. et al. Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 173, 5372–5380 (2004).

    Article  CAS  Google Scholar 

  17. DiSanto, J.P., Bonnefoy, J.Y., Gauchat, J.F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361, 541–543 (1993).

    Article  CAS  Google Scholar 

  18. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  Google Scholar 

  19. Ridge, J.P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  20. Schoenberger, S.P., Toes, R.E., van der Voort, E.I., Offringa, R. & Melief, C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  21. Berhanu, D., Mortari, F., De Rosa, S.C. & Roederer, M. Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods 279, 199–207 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Intramural Research Program of the US National Institutes of Health, Vaccine Research Center, National Institute of Allergy and Infectious Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Roederer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, P., Yu, J. & Roederer, M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 11, 1113–1117 (2005). https://doi.org/10.1038/nm1293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing