Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultradispersity of diamond at the nanoscale

Abstract

Nanometre-sized diamond has been found in meteorites1, protoplanetary nebulae2 and interstellar dusts3, as well as in residues of detonation4 and in diamond films5,6. Remarkably, the size distribution of diamond nanoparticles seems to be peaked around 2–5 nm, and to be largely independent of preparation conditions. We have carried out ab initio calculations of the stability of nanodiamond as a function of surface hydrogen coverage and of size. We have found that at about 3 nm, and for a broad range of pressures and temperatures, particles with bare, reconstructed surfaces become thermodynamically more stable than those with hydrogenated surfaces, thus preventing the formation of larger grains. Our findings provide an explanation of the size distribution of extraterrestrial and of terrestrial nanodiamond found in ultradispersed and ultracrystalline diamond films. They also provide an atomistic structural model of these films, based on the topology and structure of 2–3-nm dimond clusters consisting of a diamond core surrounded by a fullerene-like carbon network7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation energy per carbon atom (Ef) of nanodiamonds as a function of the hydrogen chemical potential (μH).
Figure 2: Trends in formation energy with particle size.
Figure 3: Comparison of the formation of nanodiamonds with that of flat diamond surfaces.

Similar content being viewed by others

References

  1. Lewis, R.S., Tang, M., Wacker, J.F., Anders, E. & Steel, E. Interstellar diamonds in meteorites. Nature 326, 160–162 (1987).

    Article  CAS  Google Scholar 

  2. Hill, H.G., Jones, A.P. & d'Hendecourt, L.B. Diamonds in carbon-rich proto-planetary nebulae. Astron. Astrophys. 336, L41–L44 (1998).

    CAS  Google Scholar 

  3. Dai, Z.R. et al. Possible in situ formation of meteoritic nanodiamonds in the early solar system. Nature 418, 157–159 (2002).

    Article  CAS  Google Scholar 

  4. Greiner, N.R., Philips, D.S., Johnson, J.D. & Volk, F. Diamonds in detonation soots. Nature 333, 440–442 (1988).

    Article  CAS  Google Scholar 

  5. Jiao, S. et al. Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without H2 . Appl. Phys. 90, 118–122 (2001).

    Article  CAS  Google Scholar 

  6. Krauss, A.R. et al. Electron field emission for ultrananocrystalline diamond film. J. Appl. Phys. 89, 2958–2967 (2001).

    Article  CAS  Google Scholar 

  7. Raty, J.Y., Galli, G., van Buuren, A. & Terminello, L. Quantum confinement and fullerene-like surface reconstruction in nanodiamond. Phys. Rev. Lett. 90, 037401 (2003).

    Article  Google Scholar 

  8. Van Kerkhoven, C., Thielens, A.G. & Waelkens, C. Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 384, 568–584 (2002).

    Article  Google Scholar 

  9. Van Thiel, M. & Ree, F.H. Properties of carbon clusters in TNT detonation products: the graphite diamond transition. J. Appl. Phys. 62, 1761–1767 (1987).

    Article  CAS  Google Scholar 

  10. Mater. Res. Bull. (Special Issue) 23, No. 9 (1998).

  11. Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S. & Buseck, P.R. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nanodiamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996).

    Article  CAS  Google Scholar 

  12. Aleksenskii, A.E., Baidakova, M.V., Ya. Vul', A. & Siklitskii, V.I. The structure of diamond nanoclusters. Fiz. Tverd. Tela 41, 740–743 (1999).

    Google Scholar 

  13. Zeger, L. & E. Kaxiras, E. New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys. Rev. Lett. 70, 2923–2926 (1993).

    Article  Google Scholar 

  14. Heggie, M.I., Latham, C.D., Jones, R. & Briddon, P.R. Instability of tetrahedral bonding for the C100 molecule. Phys. Rev. B 50, 5937–5940 (1994).

    Article  CAS  Google Scholar 

  15. Butenko, Yu. V. et al. The kinetics of the graphitization of dispersed diamonds at 'low' temperatures'. J. Appl. Phys. 88, 4380–4388 (2000).

    Article  CAS  Google Scholar 

  16. Bulusheva, L.G. et al. Topology and electronic structure of onion-like carbon and graphite/diamond. Mater. Res. Soc. Symp. Proc. 703, V9.22.1–V9.22.6 (2002).

    Google Scholar 

  17. De Vita, A., Galli, G., Canning, A. & Car, R. A microscopic model for surface-induced diamond to graphite transitions. Nature 379, 523–526 (1996).

    Article  CAS  Google Scholar 

  18. Jungnickel, G., Latham, C.D., Heggie, M.I. & Frauenheim, T. On the graphitization of diamond surfaces: the importance of twins. Diamond Relat. Mater. 5, 102–107 (1996).

    Article  CAS  Google Scholar 

  19. Kern, G. & Hafner, J. Ab initio molecular dynamics studies of the graphitization of flat and stepped (111) diamond surfaces. Phys. Rev. B 58, 13167–13175 (1998).

    Article  CAS  Google Scholar 

  20. Krauss, A.R. et al. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond Relat. Mater. 10, 1952–1961 (2001).

    Article  CAS  Google Scholar 

  21. Yang, W. et al. DNA modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Mater. 1, 253–257 (2002).

    Article  CAS  Google Scholar 

  22. Dahl, J.E.P., Liu, S.G. & Carlson, R.M.K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003).

    Article  CAS  Google Scholar 

  23. Puzder, A., Williamson, A.J., Grossman, J.C. & Galli, G. Surface chemistry of silicon nanoclusters. Phys. Rev. Lett. 88, 097401 (2002).

    Article  Google Scholar 

  24. Badziag, P., Verwoerd, W.S., Ellis, W.P. & Greiner, N.R. Nanometre-sized diamonds are more stable than graphite. Nature 343, 244–245 (1990).

    Article  CAS  Google Scholar 

  25. Ree, F.H., Winter, N.W., Glosli, J.N. & Viecelli, J.A. Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature. Physica B 65, 223–229 (1999).

    Article  Google Scholar 

  26. Car, R. & Parrinello, M. Unified approach to molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  27. Hong, S. & Chou, M.Y. Theoretical study of hydrogen-covered diamond (100) surface: a chemical potential study. Phys. Rev. B 55, 9975–9982 (1997).

    Article  CAS  Google Scholar 

  28. Steckel, J.A., Kresse, G. & Hafner, J. Structural characterization of the hydrogen covered C(100) surface by DFT calculations. Phys. Rev. B 66, 155406 (2002).

    Article  Google Scholar 

  29. Hsu, W. Gas-phase kinetics during microwave plasma-assisted diamond deposition: Is the hydrocarbon product distribution dictated by neutral–neutral interactions? J. Appl. Phys. 72, 3102–3109 (1992).

    Article  CAS  Google Scholar 

  30. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  31. Hamann, D.R. Generalized norm-conserving pseudopotentials. Phys. Rev. B 40, 2980–2987 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by the University of California Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. J.Y.R. acknowledges support from the FNRS and the NOMADE contract no. 115052 from the Région Wallonne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Raty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raty, JY., Galli, G. Ultradispersity of diamond at the nanoscale. Nature Mater 2, 792–795 (2003). https://doi.org/10.1038/nmat1018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing