Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reinforcement of single-walled carbon nanotube bundles by intertube bridging

Abstract

During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of the bending modulus Eb of twelve carbon nanotube ropes on the tube diameter D.
Figure 2: Dependence of Eb of carbon nanotube ropes on the irradiation dose.
Figure 3: Evolution of the morphology of a carbon nanotube rope under electron-beam irradiation.
Figure 4: Atomic models based on DFT calculations of two different kinds of bridges formed between neighbouring carbon nanotubes.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Salvetat, J.-P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    Article  CAS  Google Scholar 

  3. Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997).

    Article  CAS  Google Scholar 

  4. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  CAS  Google Scholar 

  5. Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  CAS  Google Scholar 

  6. Dalton, A.B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).

    Article  CAS  Google Scholar 

  7. Zhu, H.W. et al. Direct synthesis of long single-walled carbon nanotube strands. Science 296, 884–886 (2002).

    Article  CAS  Google Scholar 

  8. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1222 (1999).

    Article  CAS  Google Scholar 

  9. Banhart, F. & Ajayan, P.M. Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433–435 (1996).

    Article  CAS  Google Scholar 

  10. Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992).

    Article  CAS  Google Scholar 

  11. Smith, B.W., Monthioux, M. & Luzzi, D.E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  12. Mickelson, W., Aloni, S., Han, W.-Q., Cumings, J. & Zettl, A. Packing C60 in boron nitride nanotubes. Science 300, 467–469 (2003).

    Article  CAS  Google Scholar 

  13. Ajayan, P.M., Ravikumar, V. & Charlier, J.-C. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998).

    Article  CAS  Google Scholar 

  14. Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C. & Ajayan, P.M. Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000).

    Article  CAS  Google Scholar 

  15. Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

    Article  CAS  Google Scholar 

  16. Stahl, H., Appenzeller, J., Martel, R., Avouris, Ph. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5186 (2000).

    Article  CAS  Google Scholar 

  17. Krasheninnikov, A.V., Nordlund, K., Sirviö, M., Salonen, E. & Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001).

    Article  Google Scholar 

  18. Zhang, Y. & Iijima, S. Microstructural evolution of single-walled carbon nanotubes under electron irradiation. Phil. Mag. Lett. 80, 427–433 (2000).

    Article  CAS  Google Scholar 

  19. Krasheninnikov, A.V., Nordlund, K., Keinonen, J. & Banhart, F. Ion-irradiation-induced welding of carbon nanotubes. Phys. Rev. B 66, 245403 (2002).

    Article  Google Scholar 

  20. Nishi, Y., Toriyama, T., Oguri, K., Tonegawa, A. & Takayama, K. High fracture resistance of carbon fiber treated by electron beam irradiation. J. Mater. Res. 16, 1632–1635 (2001).

    Article  CAS  Google Scholar 

  21. Oku, T., Kurumada, A., Kawamata, K. & Inagaki, M. Effects of argon ion irradiation on the microstructures and physical properties of carbon fibers. J. Nucl. Mater. 303, 242–245 (2002).

    Article  CAS  Google Scholar 

  22. Smith, B.W. & Luzzi, D.E. Electron irradiation effects in single wall carbon nanotubes. J. App. Phys. 90, 3509–3515 (2001).

    Article  CAS  Google Scholar 

  23. Crespi, V.H., Chopra, N.G., Cohen, M.L., Zettl, A. & Louie, S.G. Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys. Rev. B 54, 5927–5931 (1996).

    Article  CAS  Google Scholar 

  24. Salvetat, J.-P. et al. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161–165 (1999).

    Article  CAS  Google Scholar 

  25. Gere, J.M. & Timoshenko, S.P. Mechanics of Materials (PWS-Kent, Boston, USA, 1984).

    Google Scholar 

  26. Lee, D.-H., Lee, H., Park, B., Poker, D.B. & Riester, L. The effect of implantation temperature on the surface hardness, elastic modulus and Raman scattering in amorphous carbon. App. Phys. Lett. 70, 3104–3106 (1997).

    Article  CAS  Google Scholar 

  27. Goggin, P.R. & Reynolds, W.N. Elastic constants of reactor graphites. Phil. Mag. 16, 317–330 (1967).

    Article  CAS  Google Scholar 

  28. Telling, R.H., Ewels, C.P., El-Barbary, A.A. & Heggie, M.I. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003).

    Article  CAS  Google Scholar 

  29. Salonen, E., Krasheninnikov, A.V. & Nordlund, K. Ion-irradiation-induced defects in bundles of carbon nanotubes. Nucl. Instrum. Meth. B 193, 603–608 (2002).

    Article  CAS  Google Scholar 

  30. Hiura, H., Ebbesen, T.W. & Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 7, 275–276 (1995).

    Article  CAS  Google Scholar 

  31. Segall, M.D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mat. 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  32. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Let. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Centre Interdépartmental de Microscopie Electronique (CIME) at the EPFL for giving us access to the electron microscopes. We would also like to thank Silvija Gradečak and Guido Milanesi for training and technical assistance with the electron microscope and Simon Benjamin for cutting the substrates. Interesting discussions with David Tománek, Peter Stevens, Jean-Marc Bonard and Klaus Leifer are also very much appreciated. The work is partially supported by 'Nanoscale Science' NCCR (National Center of Competence in Research) and grant 20-61735.00 of the Swiss National Science Foundation. Computational work was carried out at the CCHPCF (Cambridge-Cranfield High Performance Computing Facility), University of Cambridge and supported by grant EC HPRN-CT-2000-00154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Forró.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kis, A., Csányi, G., Salvetat, JP. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater 3, 153–157 (2004). https://doi.org/10.1038/nmat1076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing