Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hierarchically mesostructured doped CeO2 with potential for solar-cell use

Abstract

Many properties provided by supramolecular chemistry, nanotechnology and catalysis only appear in solids exhibiting large surface areas and regular porosity at the nanometre scale1,2,3,4. In nanometre-sized particles, the ratio of the number of atoms in the surface to the number in the bulk is much larger than for micrometre-sized materials, and this can lead to novel properties. Here we report the preparation of a hierarchically structured mesoporous material from nanoparticles of CeO2 of strictly uniform size. The synthesis involves self-assembly of these 5-nm CeO2 pre-treated nanoparticles in the presence of a structure directing agent (poly(alkylene oxide) block polymer). The walls of this hexagonal structured CeO2 material are formed from the primary nanoparticles. The material possesses large pore volumes, high surface areas, and marked thermal stability, allowing it to be easily doped after synthesis whilst maintaining textural and mechanical integrity. It also exhibits a photovoltaic response, which is directly derived from the nanometric particle size—normal CeO2 does not show this response. We have constructed operational organic-dye-free solar cells using nanometric ceria particles (in both mesostructured or amorphous forms) as the active component, and find efficiencies that depend on the illuminating power.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-angle X-ray diffraction pattern of material formed by self-assembly of CeO2 nanoparticles under acidic conditions, before and after calcination.
Figure 2: Representative TEM images of CeO2 samples prepared by nanoparticle self-assembly under acidic conditions.
Figure 3: Nanostructured material.
Figure 4: Optical spectra.
Figure 5: Photogeneration of electrons and holes.
Figure 6: Comparison of the charge current and spectral response of CeO2 nanoparticles and TiO2.

Similar content being viewed by others

References

  1. Cheetham, A.K., Ferey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Edn 38, 3268–3292 (1999).

    Article  CAS  Google Scholar 

  2. Foerster, S. & Antonietti, M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195–217 (1998).

    Article  CAS  Google Scholar 

  3. Forster, S. & Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Edn 41, 688–714 (2002).

    Article  CAS  Google Scholar 

  4. Klok, H.-A. & Lecommandoux, S. Supramolecular materials via block copolymer self-assembly. Adv. Mater. 13, 1217–1229 (2001).

    Article  CAS  Google Scholar 

  5. Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).

    Article  CAS  Google Scholar 

  6. Flytzani-Stephanopoulos, M. Nanostructured cerium oxide “Ecocatalysts”. MRS Bull. 26, 885–889 (2001).

    Article  CAS  Google Scholar 

  7. Corma, A. & López-Nieto, J.M. . in Handbook on the Physics and Chemistry of Rare Earths Vol. 29, (eds Gschneider, K. A. Jr & Eyring, L.) Ch. 185, 269–313 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  8. Steele, B.C.H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95–110 (2000).

    Article  CAS  Google Scholar 

  9. Murray, E.P., Tsai, T. & Barnett, S.A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999).

    Article  CAS  Google Scholar 

  10. Terribile, D., Trovarelli, A., Llorca, J., De Leitenburg, C. & Dolcetti, G. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J. Catal. 178, 299–308 (1998).

    Article  CAS  Google Scholar 

  11. Lyons, D.M., Ryan, K.M. & Morris, M.A. Preparation of ordered mesoporous ceria with enhanced thermal stability. J. Mater. Chem. 12, 1207–1212 (2002).

    Article  CAS  Google Scholar 

  12. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  Google Scholar 

  13. Kalyanasundaram, K. & Gratzel, M. in Optoelectronic Properties of Inorganic Compounds 169–194 (Plenum, New York, 1999).

    Book  Google Scholar 

  14. Durrant, J.R., Tachibana, Y., Moser, J.E., Gratzel, M. & Klug, D.R. Interfacial electron transfer in dye sensitized nanocrystalline TiO2 films. Spring. Ser. Chem. Phys. 62, 433–434 (1996).

    Article  CAS  Google Scholar 

  15. Hagfeldt, A. & Gratzel, M. Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000).

    Article  CAS  Google Scholar 

  16. Orel, Z. & Orel, B. Optical properties of pure and mixed CeO2/SnO2 thin films. Phys. Status Solidi B 186, K33–K36 (1994).

    Article  Google Scholar 

  17. Masui, T., Yamamoto, M., Sakata, T., Mori, H. & Adachi, G. Synthesis of BN coated CeO2 fine powder as a new UV blocking material. J. Mater. Chem. 10, 353–357 (2000).

    Article  CAS  Google Scholar 

  18. Bueno, R.M., Martinez-Duart, J.M., Hernandez-Velez, M. & Vazquez, L. Optical and structural characterization of r.f. sputtered CeO2 thin films. J. Mater. Sci. 32, 1861–1865 (1997).

    Article  CAS  Google Scholar 

  19. Patsalas, P., Logothetidis, S., Sygellou, L. & Kennou, S. Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 68, 035104 (2003).

    Article  Google Scholar 

  20. Liu, G., Rodriguez, J.A., Hrbek, J., Dvorak, J. & Peden, C.H.F. Electronic and chemical properties of Ce0.8Zr0.2O2(111) surfaces: photoemission, XANES, density-functional, and NO2 adsorption studies. J. Phys. Chem. B 105, 7762–7770 (2001).

    Article  CAS  Google Scholar 

  21. Li, L., Lu, L. & Xie, H. Electrolytic domain boundary between ionic and electronic conduction of doped ceria. J. Mater. Sci. Technol. 14, 451–456 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Comisión Interministerial de Ciencia y Tecnología, CICYT (MAT2003-07945-C02-01), for financial support, and A. Luque and I. Tobias of the Instituto de Energía Solar de Madrid for technical assistance and for providing calibrated solar cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corma, A., Atienzar, P., García, H. et al. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nature Mater 3, 394–397 (2004). https://doi.org/10.1038/nmat1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing