Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal

Abstract

The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of cathodoluminescence spectrum for hexagonal boron nitride at room temperature.
Figure 2: Fundamental absorption spectrum at 8 K and luminescence spectrum at 83 K.
Figure 3: Expanded view of the fundamental absorption spectrum around the 2s-like exciton structure.
Figure 4: Excitation current dependence of the 215.0-nm luminescence band.
Figure 5: Excitation current dependence of the peak intensity and the fringe linewidth at 215.0 nm.
Figure 6: Change of far-field pattern for transverse mode above threshold.
Figure 7

Similar content being viewed by others

References

  1. Nakamura, S. et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J. Appl. Phys. Lett. 35, L74–L76 (1996).

    Article  CAS  Google Scholar 

  2. Nakamura, S. et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 72, 211–213 (1998).

    Article  CAS  Google Scholar 

  3. Boguslawski, P. & Bernholc, J. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys. Rev. B 56, 9496–9505 (1997).

    Article  CAS  Google Scholar 

  4. Onuma, T. et al. Exciton spectra of an AlN epitaxial film on (0001) sapphire substrate grown by low-pressure metalorganic vapor phase epitaxy. Appl. Phys. Lett. 81, 652–654 (2002).

    Article  CAS  Google Scholar 

  5. Zupan, J. & Kolar, D. Optical properties of graphite and boron nitride. J. Phys. C 5, 3097–3100 (1972).

    Article  CAS  Google Scholar 

  6. Brown, F.C., Bachrach, R.Z. & Skibowski, M. Effect of X-ray polarization at boron K edge in hexagonal BN. Phys. Rev. B 13, 2633–2635 (1976).

    Article  CAS  Google Scholar 

  7. Zunger, A., Katzir, A. & Halperin, A. Optical properties of hexagonal boron nitride. Phys. Rev. B 13, 5560–5573 (1976).

    Article  CAS  Google Scholar 

  8. Tegeler, E., Kosuch, N., Wiech, G. & Faessler, A. Electronic structure of hexagonal boron nitride. Phys. Status Solidi B 91, 223–231 (1979).

    Article  CAS  Google Scholar 

  9. Davies, B.M., Bassani, F., Brown, F.C. & Olson, C.G. Core excitons at the boron K edge in hexagonal BN. Phys. Rev. B 24, 3537–3546 (1981).

    Article  CAS  Google Scholar 

  10. Carpenter, L.G. & Kirby, P.J. The electrical resistivity of boron nitride over the temperature range 700 °C to 1400°C. J. Phys. D 15, 1143–1151 (1982).

    Article  CAS  Google Scholar 

  11. Sugino, T., Tanioka, K., Kawasaki, S. & Shirafuji, J. Characterization and field emission of sulfur-doped boron nitride synthesized by plasma-assisted chemical vapor deposition. Jpn J. Appl. Phys. 36, L463–L466 (1997).

    Article  CAS  Google Scholar 

  12. Hoffman, D.M., Doll, G.L. & Eklund, P.C. Optical properties of pyrolytic boron nitride in the energy range 0.05–10eV. Phys. Rev. B 30, 6051–6056 (1984).

    Article  CAS  Google Scholar 

  13. Tarrio, C. & Schnatterly, S.E. Interband transitions, plasmons, and dispersion in hexagonal boron nitride. Phys. Rev. B 40, 7852–7859 (1989).

    Article  CAS  Google Scholar 

  14. Lopatin, V.V. & Konusov, F.V. Energetic states in the boron nitride band-gap. J. Phys. Chem. Solids 53, 847–854 (1992).

    Article  CAS  Google Scholar 

  15. Taylor, C.A. et al. Observation of near band gap luminescence from boron nitride films. Appl. Phys. Lett. 65, 1251–1253 (1994).

    Article  CAS  Google Scholar 

  16. Jia, J.J. et al. Resonant inelastic X-ray scattering in hexagonal boron nitride observed by soft-X-ray fluorescence spectroscopy. Phys. Rev. Lett. 76, 4054–4057 (1996).

    Article  CAS  Google Scholar 

  17. Carlisle, J.A. et al. Band structure and core hole effects in resonant inelastic soft-X-ray scattering: Experiment and theory. Phys. Rev. B 59, 7433–7445 (1999).

    Article  CAS  Google Scholar 

  18. Solozhenko, V.L., Lazarenko, A.G., Petitet, J.P. & Kanaev, A.V. Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62, 1331–1334 (2001).

    Article  CAS  Google Scholar 

  19. Robertson, J. Electronic structure and core exciton of hexagonal boron nitride. Phys. Rev. B 29, 2131–2137 (1984).

    Article  CAS  Google Scholar 

  20. Catellani, A., Posternak, M., Baldereschi, A. & Freeman, A.J. Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36, 6105–6111 (1987).

    Article  CAS  Google Scholar 

  21. Park, K.T., Terakura, K. & Hamada, N. Band structure calculations for boron nitrides with 3 different crystal structures. J. Phys. C 20, 1241–1251 (1987).

    Article  CAS  Google Scholar 

  22. Xu, Y.N. & Ching, W.Y. Calculation of ground state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44, 7787–7798 (1991).

    Article  CAS  Google Scholar 

  23. Furthmuller, J., Hafner, J. & Kresse, G. Ab-initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B 50, 15606–15622 (1994).

    Article  CAS  Google Scholar 

  24. Liu, L., Feng, Y.P. & Shen, Z.X. Structural and electronic properties of h-BN. Phys. Rev. B 68, 104102 (2003).

    Article  Google Scholar 

  25. Taniguchi, T. & Yamaoka, S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure. J. Cryst. Growth 222, 549–557 (2001).

    Article  CAS  Google Scholar 

  26. Kawarada, H. et al. Excitonic recombination radiation in undoped and boron-doped CVD diamonds. Phys. Rev. B 47, 3633–3637 (1993).

    Article  CAS  Google Scholar 

  27. Kawarada, H. & Yamaguchi, A. Excitonic recombination radiation as characterization of diamonds using cathodoluminescence. Diamond Relat. Mater. 2, 100–105 (1993).

    Article  CAS  Google Scholar 

  28. Kawarada, H., Tsutsumi, T., Hirayama, H. & Yamaguchi, A. Dominant free-exciton recombination radiation in CVD diamonds. Appl. Phys. Lett. 64, 451–453 (1994).

    Article  CAS  Google Scholar 

  29. Knox, R.S. Theory of Excitons (eds Seitz, F. & Turnbull, D.) (Academic, New York, 1963).

    Google Scholar 

  30. Koster, G.F. in Solid State Physics (eds Seitz, F. & Turnbull, D.) 173 (Academic, New York, 1957).

    Google Scholar 

  31. Mishima, O. & Era, K. in Electric Refractory Materials (ed. Kumashiro, Y.) 495–556 (Marcel Dekker, New York, 2000).

    Google Scholar 

  32. Shinada, M. & Sugano, S. Interband optical transitions in extremely anisotropic semiconductors. 1. Bound and unbound exciton absorption. J. Phys. Soc. Jpn 21, 1936–1946 (1966).

    Article  CAS  Google Scholar 

  33. Dean, P.J., Lightowlers, E.C. & Wight, D.R. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond. Phys. Rev. 140, A352–A368 (1965).

    Article  Google Scholar 

  34. Teofilov, N. et al. Optical high excitation of diamond: phase diagram of excitons, electron–hole liquid and electron-hole plasma. Diamond Relat. Mater. 12, 636–641 (2003).

    Article  CAS  Google Scholar 

  35. Masumoto, Y., Unuma, Y., Tanaka, Y. & Shionoya, S. Picosecond time of flight measurements of excitonic polariton in CuCl. J. Phys. Soc. Jpn 47, 1844–1849 (1979).

    Article  CAS  Google Scholar 

  36. Reynolds, D.C., Look, D.C. & Jogai, B. Optically pumped ultraviolet lasing from ZnO. Solid State Commun. 99, 873–875 (1996).

    Article  CAS  Google Scholar 

  37. Ding, J. et al. Excitonic gain and laser-emission in Znse-based quantum-wells. Phys. Rev. Lett. 69, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  38. Zaitsev, A.M. Optical Properties of Diamond (Springer, New York, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Koizumi and M. Katagiri for technical support in the lasing experiments, and T. Kuroda and K. Kobayashi for useful suggestions on the band structure of hBN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Watanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater 3, 404–409 (2004). https://doi.org/10.1038/nmat1134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing