Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation

Abstract

Flame synthesis is one of the most versatile and promising technologies for large-scale production of nanoscale materials1,2,3. Pyrolysis has recently been shown to be a useful route for the production of single-walled nanotubes4, quantum dots5 and a wide variety of nanostructured ceramic oxides for catalysis6 and electrochemical applications7. An understanding of the mechanisms of nanostructural growth in flames has been hampered by a lack of direct observations of particle growth8,9,10,11,12,13,14,15,16,17,18,19,20,21, owing to high temperatures (2,000 K), rapid kinetics (submillisecond scale), dilute growth conditions (10−6 volume fraction) and optical emission of synthetic flames. Here we report the first successful in situ study of nanoparticle growth in a flame using synchrotron X-ray scattering. The results indicate that simple growth models, first derived for colloidal synthesis22, can be used to facilitate our understanding of flame synthesis. Further, the results indicate the feasibility of studies of nanometre-scale aerosols of toxicological23 and environmental24 concern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Corrected, axial, scattering curves as a function of height above the burner.
Figure 3: 2D plots of concentration.
Figure 4: Axial properties of flame.
Figure 5: 2D plots of nanoparticle growth.

Similar content being viewed by others

References

  1. Friedlander, S.K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics 2nd edn (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  2. Ulrich, G.D. Flame synthesis of fine particles. Chem. Eng. News 62, 22–29 (1984).

    Article  CAS  Google Scholar 

  3. Pratsinis, S.E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197–219 (1998).

    Article  CAS  Google Scholar 

  4. Van der Wal, R.L., Berger, G.M. & Hall, L.J. Single-walled carbon nanotube synthesis via a multi-stage flame configuration. J. Phys. Chem. B 106, 3564–3567 (2002).

    Article  CAS  Google Scholar 

  5. Madler, L., Stark, W.J. & Pratsinis, S.E. Rapid synthesis of stable ZnO quantum dots. J. Appl. Phys. 92, 6537–6540 (2002).

    Article  CAS  Google Scholar 

  6. Stark, W.J., Pratsinis, S.E. & Baiker, A. Flame made titania/silica epoxidation catalysts. J. Catal. 203, 516–524 (2001).

    Article  CAS  Google Scholar 

  7. Madler, L., Stark, W.J. & Pratsinis, S.E. Flame-made ceria nanoparticles. J. Mater. Res. 17, 1356–1362 (2002).

    Article  CAS  Google Scholar 

  8. Anala, S. et al. In situ NMR spectroscopy of combustion. J. Am. Chem. Soc. 125, 13298–13302 (2003).

    Article  CAS  Google Scholar 

  9. Tsantilis, S., Briesen, H. & Pratsinis, S.E. Sintering time for silica particle growth. Aerosol Sci. Technol. 34, 237–246 (2001).

    Article  CAS  Google Scholar 

  10. Arabi-Katbi, O.I., Pratsinis, S.E., Morrison, P.W. Jr & Megaridis, C.M. Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combust. Flame 124, 560–572 (2001).

    Article  CAS  Google Scholar 

  11. Morrison, P.W., Raghavan, R., Timpone, A.J., Artelt, C.P. & Pratsinis, S.E. In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chem. Mater. 9, 2702–2708 (1997).

    Article  CAS  Google Scholar 

  12. Dobbins, R.A. & Megaridis, C.M. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3, 254–259 (1987).

    Article  CAS  Google Scholar 

  13. Köylü, Ü.Ö., McEnally, C.S., Rosner, D.E. & Pfefferle, L.D. Simultaneous measurements of soot volume fraction and particle size / microstructure in flames using a thermophoretic sampling technique. Combust. Flame 110, 494–507 (1997).

    Article  Google Scholar 

  14. Hurd, A.J. & Flower, W.L. In situ growth and structure of fractal silica aggregates in a flame. J. Colloid Interface Sci. 122, 178–192 (1988).

    Article  CAS  Google Scholar 

  15. Xing, Y., Köylü, Ü.Ö. & Rosner, D.E. In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates. Appl. Opt. 38, 2686–2697 (1999).

    Article  CAS  Google Scholar 

  16. King, G.B., Sorensen, C.M., Lester, T.W. & Merklin, J.F. Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime. Phys. Rev. Lett. 50, 1125–1128 (1983).

    Article  CAS  Google Scholar 

  17. Chowdhury, D.P., Sorensen, C.M., Taylor, T.W., Merklin, J.F. & Lester, T.W. Application of photon correlation spectroscopy to flowing brownian motion systems. Appl. Opt. 23, 4149–4154 (1984).

    Article  CAS  Google Scholar 

  18. Taylor, T.W. & Sorensen, C.M. Gaussian beam effects on the photon correlation spectrum from a flowing brownian motion system. Appl. Opt. 25, 2421–2426 (1986).

    Article  CAS  Google Scholar 

  19. Sorensen, C.M., Hageman, W.B., Rush, T.J., Huang, H. & Oh, C. Aerogelation in a flame soot aerosol. Phys. Rev. Lett. 80, 1782–1785 (1998).

    Article  CAS  Google Scholar 

  20. Sorensen, C.M., Hagemann, W.B. Two-dimensional soot. Langmuir 17, 5431–5434 (2001).

    Article  CAS  Google Scholar 

  21. Zachariah, M.R. & Semerjian, H.G. Simulation of ceramic particle formation: Comparison with in-situ measurements. Am. Inst. Chem. Eng. J. 35, 2003–2012 (1989).

    Article  CAS  Google Scholar 

  22. Sugimoto, T. Monodisperse Particles (Elsevier, New York, 2001).

    Google Scholar 

  23. Pyne, S. Small particles add up to big disease risk. Science 295, 1994 (2002).

    Article  CAS  Google Scholar 

  24. Chameides, W.L. & Bergin, M. Soot takes center stage. Science 297, 2214–2215 (2002).

    Article  CAS  Google Scholar 

  25. Guinier, A. & Fournet, G. Small Angle Scattering of X-rays (John Wiley & Sons, New York, 1955).

    Google Scholar 

  26. Glatter, O. & Kratky, O. Small-angle X-ray Scattering (Academic, London, 1982).

    Google Scholar 

  27. Roe, R.-J. Methods of X-Ray and Neutron Scattering in Polymer Science (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  28. Beaucage, G., Kammler, H.K. & Pratsinis, S.E. Estimate of particle-size polydispersity from small-angle scattering. J. Appl. Crystallogr. (in the press).

  29. Beaucage, G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717–728 (1995).

    Article  CAS  Google Scholar 

  30. Beaucage, G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29, 134–146 (1996).

    Article  CAS  Google Scholar 

  31. Hyeon-Lee, J., Beaucage, G., Pratsinis, S.E. & Vemury, S. Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir 14, 5751–5756 (1998).

    Article  CAS  Google Scholar 

  32. Kammler, H.K., Beaucage, G., Mueller, R. & Pratsinis, S.E. Structure of flame-made silica nanoparticles by ultra small-angle x-ray scattering. Langmuir 20, 1915–1921 (2004).

    Article  CAS  Google Scholar 

  33. Pontoni, D., Narayanan, T. & Rennie, A.R. Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18, 56–59 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CTS-0070214), the Swiss National Science Foundation (200021-101901/1), the Swiss Commission for Technology and Innovation (TopNano21-5487.1) and the synchrotron facilities at ESRF (beam time allocation ME421). We thank J. Gorini for technical assistance; we also thank D. J. Kohls (at the University of Cincinnati), and J. Ilavsky and P. Jemian (at UNICAT, Advanced Photon Source) for collaborative work. G.B. thanks the University of Cincinnati for sabbatical leave at ETH Zentrum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Beaucage.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaucage, G., Kammler, H., Mueller, R. et al. Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nature Mater 3, 370–373 (2004). https://doi.org/10.1038/nmat1135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing