Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flow-induced properties of nanotube-filled polymer materials

Abstract

Carbon nanotubes (CNTs) are under intense investigation in materials science owing to their potential for modifying the electrical conductivity σ, shear viscosity η, and other transport properties of polymeric materials. These particles are hybrids of filler and nanoscale additives because their lengths are macroscopic whereas their cross-sectional dimensions are closer to molecular scales. The combination of extended shape, rigidity and deformability allows CNTs to be mechanically dispersed in polymer matrices in the form of disordered 'jammed' network structures. Our measurements on representative network-forming multiwall nanotube (MWNT) dispersions in polypropylene indicate that these materials exhibit extraordinary flow-induced property changes. Specifically, σ and η both decrease strongly with increasing shear rate, and these nanocomposites exhibit impressively large and negative normal stress differences, a rarely reported phenomenon in soft condensed matter. We illustrate the practical implications of these nonlinear transport properties by showing that MWNTs eliminate die swell in our nanocomposites, an effect crucial for their processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of MWNT/PP nanocomposites.
Figure 2: Characterization of the transport property transitions in MWNT/PP nanocomposites.
Figure 3: Modification of transport properties during flow.
Figure 4: Suppression of die swell by MWNT filler.

Similar content being viewed by others

References

  1. Onsager, L. The effect of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  2. Larson, R.G. Arrested tumbling in shearing flows of liquid-crystal polymers. Macromolecules 23, 3983–3992 (1990).

    Article  CAS  Google Scholar 

  3. Ren, J.X. & Krishnamoorti, R. Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36, 4443–4451 (2003).

    Article  CAS  Google Scholar 

  4. Huxtable, S.T. et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  5. Baughman, R.H., Zakhidov, A.A. & de Heer, W.A. Carbon nanotubes - the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  6. Potschke, P., Fornes, T.D. & Paul, D.R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247–3255 (2002).

    Article  CAS  Google Scholar 

  7. Terrones, M. Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Ann. Rev. Mater. Res. 33, 419–501 (2003).

    Article  CAS  Google Scholar 

  8. Kashiwagi, T. et al. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761–765 (2002).

    Article  CAS  Google Scholar 

  9. Yakobson, B.I., Brabec, C.J. & Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    Article  CAS  Google Scholar 

  10. Bicerano, J., Douglas, J.F. & Brune, D.A. Model for the viscosity of particle dispersions. J. Macromol. Sci. Rev. Macromol. Chem. Phys. C39, 561–642 (1999).

    Article  CAS  Google Scholar 

  11. Liu, A.J. & Nagel, S.R. Nonlinear dynamics: Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  Google Scholar 

  12. Cloitre, M., Borrega, R., Monti, F. & Leibler, L. Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90, 068303 (2003).

    Article  Google Scholar 

  13. Garboczi, E.J., Snyder, K.A., Douglas, J.F. & Thorpe, M.F. Geometrical percolation-threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1995).

    Article  CAS  Google Scholar 

  14. Head, D.A., Levine, A.J. & MacKintosh, F.C. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003).

    Article  CAS  Google Scholar 

  15. Bin, Y.Z., Kitanaka, M., Zhu, D. & Matsuo, M. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36, 6213–6219 (2003).

    Article  CAS  Google Scholar 

  16. Kinloch, I.A., Roberts, S.A. & Windle, A.H. A rheological study of concentrated aqueous nanotube dispersions. Polymer 43, 7483–7491 (2002).

    Article  CAS  Google Scholar 

  17. MacKintosh, F.C., Kas, J. & Janmey, P.A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  CAS  Google Scholar 

  18. Doi, M. & Edwards, S.F. The Theory of Polymer Dynamics (Oxford Univ. Press, New York 1986).

    Google Scholar 

  19. Safadi, B., Andrews, R. & Grulke, E.A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 84, 2660–2669 (2002).

    Article  CAS  Google Scholar 

  20. Powell, R.L. Rheology of suspensions of rodlike particles. J. Stat. Phys. 62, 1073–1094 (1991).

    Article  Google Scholar 

  21. Tanner, R.I. Engineering Rheology (Oxford Univ. Press, New York 2000).

    Google Scholar 

  22. Douglas, J.F. “Shift” in polymer blend phase-separation temperature in shear flow. Macromolecules 25, 1468–1474 (1992).

    Article  CAS  Google Scholar 

  23. Shaffer, M.S.P. & Windle, A.H. Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32, 6864–6866 (1999).

    Article  CAS  Google Scholar 

  24. Du, F.M., Fischer, J.E. & Winey, K.I. Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. Polym. Phys. 41, 3333–3338 (2003).

    Article  CAS  Google Scholar 

  25. Martin, J.E. & Heaney, M.B. Reversible thermal fusing model of carbon black current-limiting thermistors. Phys. Rev. B 62, 9390–9397 (2000).

    Article  CAS  Google Scholar 

  26. Bossis, G., Meunier, A. & Brady, J.F. Hydrodynamic stress on fractal aggregates of spheres. J. Chem. Phys. 94, 5064–5070 (1991).

    Article  Google Scholar 

  27. Baek, S.G., Magda, J.J. & Larson, R.G. Rheological differences among liquid-crystalline polymers. 1. the 1st and 2nd normal stress differences of Pbg solutions. J. Rheol. 37, 1201–1224 (1993).

    Article  CAS  Google Scholar 

  28. Montesi, A., Peña, A.A. & Pasquali, M. Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys. Rev. Lett. 92, 058303 (2004).

    Article  Google Scholar 

  29. Zarraga, I.E., Hill, D.A. & Leighton, D.T. The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185–220 (2000).

    Article  CAS  Google Scholar 

  30. Kolli, V.G., Pollauf, E.J. & Gadala-Maria, F. Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol. 46, 321–334 (2002).

    Article  CAS  Google Scholar 

  31. Singh, A. & Nott, P.R. Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293–320 (2003).

    Article  CAS  Google Scholar 

  32. Aral, B.K. & Kalyon, D.M. Viscoelastic material functions of noncolloidal suspensions with spherical particles. J. Rheol. 41, 599–620 (1997).

    Article  CAS  Google Scholar 

  33. Moan, M., Aubry, T. & Bossard, F. Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J. Rheol. 47, 1493–1504 (2003).

    Article  CAS  Google Scholar 

  34. Brady, J.F. & Carpen, I.C. Second normal stress jump instability in non-Newtonian fluids. J. Non-Newton. Fluid Mech. 102, 219–232 (2002).

    Article  CAS  Google Scholar 

  35. Davis, V.A. et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).

    Article  CAS  Google Scholar 

  36. Lin-Gibson, S., Pathak, J.A., Grulke, E.A., Wang, H. & Hobbie, E.K. Elastic-flow instability in nanotube suspensions. Phys. Rev. Lett. 92, 048302 (2004).

    Article  CAS  Google Scholar 

  37. Sierou, A. & Brady, J.F. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 1031–1056 (2002).

    Article  CAS  Google Scholar 

  38. Schmid, C.F. & Klingenberg, D.J. Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84, 290–293 (2004).

    Article  Google Scholar 

  39. Becker, L.E. & Shelley, M.J. Instability of elastic filaments in shear flow yields first-normal-stress differences. Phys. Rev. Lett. 87, 198301 (2001).

    Article  CAS  Google Scholar 

  40. Jerman, R.E. & Baird, D.G. Rheological properties of copolyester liquid-crystalline melts. 1. Capillary rheometry. J. Rheol. 25, 275–292 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Semen B. Kharchenko, Jack F. Douglas or Kalman B. Migler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharchenko, S., Douglas, J., Obrzut, J. et al. Flow-induced properties of nanotube-filled polymer materials. Nature Mater 3, 564–568 (2004). https://doi.org/10.1038/nmat1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing