Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanostructure engineering by templated self-assembly of block copolymers

Abstract

Self-assembling materials are the building blocks for bottom-up nanofabrication processes, but many self-assembled nanostructures contain defects and lack sufficient long-range order for certain nanotechnology applications. Here we investigate the formation of defects in a self-assembled array of spherical block-copolymer microdomains, using topographical templates to control the local self-assembly. Perfect ordered sphere arrays can form in both constant-width templates and width-modulated templates. For modulated templates, transition between configurations having a constant number of rows and configurations of stable arrays with varying numbers of rows is shown to be analogous to dislocation formation in an epitaxial thin film system. Based on the configuration transition energy and fluctuation energy, designed templates with a high tolerance for lithographical imperfections can direct precisely modulated block-copolymer nanostructures. This study provides insights into the design of hybrid systems combining top-down and bottom-up fabrication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The block copolymer PS–PFS in parallel-sided grooves.
Figure 2: PS–PFS arrays in modulated one-dimensional grooves.
Figure 3: Variation in sphere size within arrays of polymer spheres in modulated grooves.
Figure 4: Either constant-N or varying-N configurations can be found in a block copolymer confined in modulated templates with various geometries.
Figure 5: Creation of a specific block-copolymer array geometry by the use of a modulated template.

Similar content being viewed by others

References

  1. Park, M., Harrison, C., Chaikin, P.M., Register, R.A. & Adamson, D.H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  2. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    Article  CAS  Google Scholar 

  3. Cheng, J.Y. et al. Formation of a magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).

    Article  CAS  Google Scholar 

  4. Spatz, J.P., Herzog, T., Mobmer, S., Ziemann, P. & Moller, M. Micellar inorganic-polymer hybrid systems- a tool for nanolithography. Adv. Mater. 11, 149–153 (1999).

    Article  CAS  Google Scholar 

  5. Black, C.T. et al. Integration of self-assembled block copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409–411 (2001).

    Article  CAS  Google Scholar 

  6. Guarini K.W. et al. Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly. IEEE Electron Devices Mtg Tech. Digest, 541–542 (2003).

  7. Ross, C.A. Patterned magnetic recording media. Annu. Rev. Mater. Res. 31, 203–235 (2001).

    Article  CAS  Google Scholar 

  8. Maier, S.A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  CAS  Google Scholar 

  9. Morkved, T.L. et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273, 931–933 (1996).

    Article  CAS  Google Scholar 

  10. De Rosa, C., Park, C., Thomas, E.L. & Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433–437 (2000).

    Article  CAS  Google Scholar 

  11. Segalman, R., Yokoyama, H. & Kramer, E.J. Graphoepitaxy of spherical block copolymer films. Adv. Mater. 13, 1152–1155 (2001).

    Article  CAS  Google Scholar 

  12. Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I. & Vancso, G.J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 81, 3657–3659 (2002).

    Article  CAS  Google Scholar 

  13. Cheng, J.Y., Ross, C.A., Thomas, E.L., Smith, H.I. & Vancso, G.J. Templated self-assembly of block copolymers: Effect of substrate topography. Adv. Mater. 15, 1599–1602 (2003).

    Article  CAS  Google Scholar 

  14. Naito, K., Hieda, H., Sakurai, M., Kamata, Y. & Asakawa, K. 2.5-inch disk patterned media prepared by an artificially assisted self-assembling method. IEEE Trans. Magn. 38, 1949–1951 (2002).

    Article  CAS  Google Scholar 

  15. Fasolka, M.J. & Mayes, A.M. Block copolymer thin films: physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).

    Article  CAS  Google Scholar 

  16. Fasolka, M.J., Harris, D.J., Mayes, A.M., Yoon, M. & Mochrie, S.G.J. Observed substrate topography-mediated lateral patterning of diblock copolymer film. Phys. Rev. Lett. 79, 3018–3021 (1997).

    Article  CAS  Google Scholar 

  17. Rockford, L., Liu, Y., Mansky, P. & Russell, T.P. Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 82, 2602–2605 (1999).

    Article  CAS  Google Scholar 

  18. Kim, S.O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    Article  CAS  Google Scholar 

  19. Segalman, R.A., Hexemer, A., Hayward, R.C. & Kramer, E.J. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 36, 3272–3288 (2003).

    Article  CAS  Google Scholar 

  20. Segalman, R.A., Hexemer, A. & Kramer, E.J. Effects of lateral confinement on order in spherical block copolymer thin films. Macromolecules 36, 6831–6839 (2003).

    Article  CAS  Google Scholar 

  21. Matthews, J.W. in Epitaxial Growth (ed. Matthews, J. W.) (Academic, New York, 1975).

    Google Scholar 

  22. Manners, I. Poly(ferrocenylsilanes): novel organometallic plastics. Chem. Commun. 10, 857–865 (1999).

    Article  Google Scholar 

  23. Lammertink, R.G.H., Hempenius, M.A., Chan, V.Z.-H., Thomas, E.L. & Vancso, G.J. Poly(ferro-cenyldimethylsilanes) for reactive ion etch barrier applications. Chem. Mater. 13, 429–434 (2001).

    Article  CAS  Google Scholar 

  24. Eitouni, H.B., Balsara, N.P., Hahn, H., Pople, J.A. & Hempenius, M.A. Thermodynamic interactions in organometallic block copolymers: poly(styrene-block-ferrocenyldimethylsilane). Macromolecules 35, 7765–7772 (2002).

    Article  CAS  Google Scholar 

  25. Lammertink, R.G.H., Hempenius, M.A., Thomas, E.L. & Vancso, G.J. Periodic organic–organometallic microdomain structures in poly(styrene-block-ferrocenyl-dimethylsilane) copolymers and blends with corresponding homopolymers. J. Polym. Sci. Part B: Polym. Phys. 37, 1009–1021 (1999).

    Article  CAS  Google Scholar 

  26. Turner, M.S. Equilibrium properties of a diblock copolymer lamellar phase confined between flat plates. Phys. Rev. Lett. 69, 1788–1791 (1992).

    Article  CAS  Google Scholar 

  27. Walton, D.G., Kellogg, G.J., Mayes, A.M., Lambooy, P. & Russell, T.P. A free-energy model for confined block copolymers. Macromolecules 27, 6225–6228 (1994).

    Article  CAS  Google Scholar 

  28. Abetz, V., Stadler, R. & Leibler, L. Order–disorder and order–order transitions in AB and ABC block copolymers: description by a simple model. Polym. Bull. 37, 135–142 (1996).

    Article  CAS  Google Scholar 

  29. Stadler, R., Auschra, C., Beckmann, J., Krappe, U., Voigt-Martin, I. & Leibler, L. Morphology and thermodynamics of symmetric poly(A-block-B-block-C) triblock copolymers. Macromolecules 28, 3080–3097 (1995).

    Article  CAS  Google Scholar 

  30. Pereira, G.G. Confinement of columnar diblock copolymers: simulations, theory and applications. Euro. Phys. J. E 7, 273–289 (2002).

    CAS  Google Scholar 

  31. Matsen, M.W. Cylinder↔sphere epitaxial transitions in block copolymer melts. J. Phys. Chem. 114, 8165–8173 (2001).

    Article  CAS  Google Scholar 

  32. Matsen, M.W. Cylinder↔gyroid epitaxial transitions in complex polymeric liquids. Phys. Rev. Lett. 80, 4470–4473 (1998).

    Article  CAS  Google Scholar 

  33. Kumacheva, E., Golding, R.K., Allard, M. & Sargent, E.H. Colloid crystal growth on mesoscopically patterned surfaces: Effect of confinement. Adv. Mater. 14, 221–224 (2002).

    Article  CAS  Google Scholar 

  34. Kumacheva, E., Garstecki, P., Wu, H. & Whitesides, G.M. Two-dimensional colloid crystals obtained by coupling of flow and confinement. Phys. Rev. Lett. 91, 128301 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Henry I. Smith and Mark Mondol for assistance with lithography, J. G. Vancso for polymer synthesis, and E.L. Thomas for discussions. This work was supported by the NSF MRSEC program under award number DMR-0213282, and NSF DMR-0210321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline A. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Mayes, A. & Ross, C. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater 3, 823–828 (2004). https://doi.org/10.1038/nmat1211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing