Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Understanding the phase-change mechanism of rewritable optical media

Abstract

Present-day multimedia strongly rely on rewritable phase-change optical memories. We demonstrate that, different from the current consensus, Ge2Sb2Te5, the material of choice in DVD-RAM, does not possess the rocksalt structure but more likely consists of well-defined rigid building blocks that are randomly oriented in space consistent with cubic symmetry. Laser-induced amorphization results in drastic shortening of covalent bonds and a decrease in the mean-square relative displacement, demonstrating a substantial increase in the degree of short-range ordering, in sharp contrast to the amorphization of typical covalently bonded solids. This novel order–disorder transition is due to an umbrella-flip of Ge atoms from an octahedral position into a tetrahedral position without rupture of strong covalent bonds. It is this unique two-state nature of the transformation that ensures fast DVD performance and repeatable switching over ten million cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fourier-transformed EXAFS spectra for crystallized and laser-amorphized samples.
Figure 2: The crystal structure of laser-amorphized GST.
Figure 3: Raman scattering spectra for crystallized and re-amorphized Ge2Sb2Te5 layers.
Figure 4: Measured and simulated Ge-edge XANES spectra for GST for the crystalline and amorphous states.
Figure 5: Fragments of the local structure of GST around Ge atoms in the crystalline (left) and amorphous (right) states.

Similar content being viewed by others

References

  1. Moller, S., Perlov, C., Jackson, W., Taussig, C. & Forrest, S.R. A polymer/semiconductor write-once read-many-times memory. Nature 426, 161–169 (2003).

    Article  Google Scholar 

  2. Ovshinsky, S.R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  3. Ohta, T. Phase-change optical memory promotes the DVD optical disk. J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

    CAS  Google Scholar 

  4. Ohta, T. & Ovshinsky, S.R. in Photo-induced Metastability in Amorphous Semiconductors (ed. Kolobov, A.V.) 310–326 (Wiley-VCH, Berlin, 2003).

    Book  Google Scholar 

  5. Petrov, I.I., Imamov, R.M. & Pinsker, Z.G. Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7 . Sov. Phys. Crystallogr. 13, 339–344 (1968).

    Google Scholar 

  6. Gonzalez-Hernandez, J. et al. Free carrier absorption in the Ge:Sb:Te system. Solid State. Commun. 95, 593–596 (1995).

    Article  Google Scholar 

  7. Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y. & Hashimoto, H. Crystal structure of GeTe and Ge2Te2Te5 meta-stable phase. Thin Solid Films 370, 258–261 (2000).

    Article  CAS  Google Scholar 

  8. Yamada, N. & Matsunaga, T. Structure of laser-crystallised Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000).

    Article  CAS  Google Scholar 

  9. Koningsberger, D.C. & Prins, R. (eds) X-ray Absorption (Wiley, New York, 1988).

    Google Scholar 

  10. Frenkel, A.I., Stern, E.A., Voronel, A., Qian, M. & Newville, M. Buckled crystalline structure of mixed ionic salts. Phys. Rev. Lett. 71, 3485–3888 (1993).

    Article  CAS  Google Scholar 

  11. Littlewood, P.B. The crystal structure of IV-VI compounds: 1. Classification and description. J. Phys. C 13, 4855–4973 (1980).

    Article  CAS  Google Scholar 

  12. Chattopadhyay, T., Boucherle, J.X. & von Schnering, H.G. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C 20, 1431–1440 (1987).

    Article  CAS  Google Scholar 

  13. Kolobov, A.V., Tominaga, J., Fons, P. & Uruga, T. Local structure of crystallized GeTe films. Appl. Phys. Lett. 82, 382–384 (2003).

    Article  CAS  Google Scholar 

  14. Privitera, S., Rimini, E., Bongiorno, C., Pirovano, A. & Bez, R. Crystallization and phase separation in Ge2+xSb2Te5 thin films. J. Appl. Phys. 94, 4409–4413 (2003).

    Article  CAS  Google Scholar 

  15. Vengalis, B. & Valatska, K. Phase segregaton in Te saturated GeTe. Phys. Status Solidi B 117, 471–476 (1983).

    Article  CAS  Google Scholar 

  16. Rabe, K.M. & Joannopoulos, J.D. Theory of the structural phase transition of GeTe. Phys. Rev. B 36, 6631–6639 (1987).

    Article  CAS  Google Scholar 

  17. Tominaga, J. et al. Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004).

    Article  CAS  Google Scholar 

  18. Wakagi, M., Ogata, K. & Nakano, A. Structural study of a-Si and a-Si:H films by EXAFS and Raman-scattering spectroscopy. Phys. Rev. B 50, 10666–10671 (1994).

    Article  CAS  Google Scholar 

  19. Njoroge, W.K., Woltgens, H.W. & Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230–233 (2002).

    Article  CAS  Google Scholar 

  20. Brodsky, M.H. in Light Scattering in Solids (ed. Cardona, M.) 205–252 (Springer, Berlin, 1983).

    Book  Google Scholar 

  21. Kalb, J., Spaepen, F. & Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389–2393 (2003).

    Article  CAS  Google Scholar 

  22. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991).

    Article  CAS  Google Scholar 

  23. Ovshinsky, S.R. in Insulating and Semiconducting Glasses (ed. Boolchand, P.) 729–780 (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  24. Angell, C.A. in Insulating and Semiconducting Glasses (ed. Boolchand, P.) 1–52 (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  25. Yassievich, I.A. Recombination-induced defect heating and related phenomena. Semicond. Sci. Technol. 9, 1933–1953 (1994).

    Article  Google Scholar 

  26. Ankudinov, A.L., Ravel, B., Rehr, J.J. & Conradson, S. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The XAFS measurements were performed at beamlines 12C at the Photon Factory, Japan, and BL01B1 at SPring-8, Japan as parts of proposals 2001G332 and 2001B0099-NX, respectively. A.V.K. would like to thank A. S. Mishchenko for a useful discussion. A. I. F. acknowledges support by the US Department of Energy Grant No. DE-FG02- 03ER15477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kolobov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolobov, A., Fons, P., Frenkel, A. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater 3, 703–708 (2004). https://doi.org/10.1038/nmat1215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing