Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Slow relaxation and compaction of granular systems

Abstract

Granular materials are of substantial importance in many industrial and natural processes, yet their complex behaviours, ranging from mechanical properties of static packing to their dynamics, rheology and instabilities, are still poorly understood. Here we focus on the dynamics of compaction and its 'jamming' phenomena, outlining recent statistical mechanics approaches to describe it and their deep correspondence with thermal systems such as glass formers. In fact, granular media are often presented as ideal systems for studying complex relaxation towards equilibrium. Granular compaction is defined as an increase of the bulk density of a granular medium submitted to mechanical perturbation. This phenomenon, relevant in many industrial processes and widely studied by the soil mechanics community, is simple enough to be fully investigated and yet reveals all the complex nature of granular dynamics, attracting considerable attention in a broad range of disciplines ranging from chemical to physical sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-ups and density relaxation laws.
Figure 2: Annealing and aging during compaction.
Figure 3: Experimental measurement of an effective temperature.
Figure 4: Temperature determination in a numerical model.
Figure 5: Phase diagram for a numerical model of granular material.

Similar content being viewed by others

References

  1. Bridgewater, J. Particle technology. Chem. Eng. Sci. 50, 4081–4089 (1995).

    Article  Google Scholar 

  2. Jaeger, H., Nagel, S. & Behringer, R. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1262 (1996).

    Article  Google Scholar 

  3. Shinbrot, T. & Muzzio, F. Nonequilibrium patterns in granular mixing and segregation. Phys. Today 53, 25–30 (2000).

    Article  Google Scholar 

  4. Ottino, J. & Khakar, D. Mixing and segregation of granular materials. Ann. Rev. Fluid Mech. 32, 55–91 (2000).

    Article  Google Scholar 

  5. Shinbrot, T. & Muzzio, F. J. Noise to order. Nature 410, 251–258 (2001).

    Article  CAS  Google Scholar 

  6. Coniglio, A., A., Herrmann, H. J. & Nicodemi, M. (eds) Unifying Concepts in Granular Media and Glasses (Elsevier, Amsterdam, 2004).

    Google Scholar 

  7. Edwards, S. F. & Oakeshott, R. B. S. Theory of powders. Physica A 157, 1080–1090 (1989).

    Article  Google Scholar 

  8. Mehta, A. & Edwards, S. F. statistical mechanics of powder mixtures. Physica A 157, 1091–1100 (1989).

    Article  Google Scholar 

  9. Knight, J., Fandrich, C. G., Lau, C. N., Jaeger, H. & Nagel, S. Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957–3963 (1995).

    Article  CAS  Google Scholar 

  10. Nowak, E., Knight, J., Povinelli, M., Jaeger, H. & Nagel, S. Reversibility and irreversibility inthe packing of vibrated granular material. Powder Technol. 94, 79–83 (1997).

    Article  CAS  Google Scholar 

  11. Philippe, P. & Bideau, D. Compaction dynamics of a granular medium under vertical tapping. Europhys. Lett. 60, 677–683 (2002).

    Article  CAS  Google Scholar 

  12. Philippe, P. & Bideau, D. Granular medium under vertical tapping: change of compaction and convection dynamics around the liftoff threshold. Phys. Rev. Lett. 91, 104302 (2003).

    Article  CAS  Google Scholar 

  13. Villarruel, F. X., Lauderdale, B. E., Mueth, D. M. & Jaeger, H. M. Compaction of rods: Relaxation and ordering in vibrated, anisotropic granular material. Phys. Rev. E 61, 6914–6921 (2000).

    Article  CAS  Google Scholar 

  14. Ribière, P., Richard, P., Bideau, D. & Delannay, R. Importance of convection in the compaction mechanisms of anisotropic granular media. Phys. Rev. E (in the press).

  15. Nowak, E. R., Knight, J. B., Ben-Naim, E., Jaeger, H. M. & Nagel, S. R. Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971–1982 (1998).

    Article  CAS  Google Scholar 

  16. Philippe, P. Étude Théorique et Expérimentale de le Densification des Milieux Granulaires Thesis, Univ. Rennes I (2002).

    Google Scholar 

  17. Nicolas, M., Duru, P. & Pouliquen, O. Compaction of a granular material under cyclic shear. Eur. Phys. J. E 3, 309–314 (2000).

    Article  CAS  Google Scholar 

  18. Josserand, C., Tkachenko, A. V., Mueth, D. M. & Jaeger, H. M. Memory effects in granular materials. Phys. Rev. Lett. 85, 3632–3635 (2000).

    Article  CAS  Google Scholar 

  19. D'Anna, G. & Gremaud, G. The jamming route to the glass state in weakly perturbed granular media. Nature 413, 407–409 (2001).

    Article  CAS  Google Scholar 

  20. D'Anna, G., Mayor, P., Barrat, A., Loreto, V. & Nori, F. Observing brownian motion in vibration-fluidized granular media. Nature 424, 909–912 (2003).

    Article  CAS  Google Scholar 

  21. Nicodemi, M., Coniglio, A. & Herrmann, H. J. Frustration and slow dynamics of granular packings. Phys. Rev. E 55, 3962–3969 (1997).

    Article  CAS  Google Scholar 

  22. Liu, A. & Nagel, S. Nonlinear dynamics: Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  Google Scholar 

  23. Kurchan, J. in Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (eds Edwards, S., Liu, A. & Nagel, S.) 72–73 (Taylor & Francis, London, 2001).

    Google Scholar 

  24. O'Hern, C., Silbert, L., Liu, J. & Nagel, S. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  CAS  Google Scholar 

  25. Edwards, S. in Granular Matter; An Interdisciplinary Approach 121–140 (ed. Metha, A.) (Springer, New York, 1994).

    Book  Google Scholar 

  26. Boutreux, T. & de Gennes, P. Compaction of granular mixtures: a free volume model. Physica A 244, 59–67 (1997).

    Article  CAS  Google Scholar 

  27. Ben-Naim, E., Knight, J. B., Nowak, E. R. & Nagel, S. Slow relaxation in granular compaction. Physica D 123, 380–385 (1998).

    Article  CAS  Google Scholar 

  28. Metha, A. & Barker, G. Vibrated powders: a micorscopic approach. Phys. Rev. Lett. 67, 394–397 (1991).

    Article  Google Scholar 

  29. Barker, G. & Mehta, A. Vibrated powders: structure, correlations, and dynamics. Phys. Rev. A 45, 3425–3446 (1992).

    Article  Google Scholar 

  30. Nicodemi, M., Coniglio, A. & Herrmann, H. J. The compaction of granular media and frustrated ising magnets. J. Phys. A 30, 379–385 (1997).

    Article  Google Scholar 

  31. Brey, J. J., Padros, A. & Sanchez-Rey, B. Thermodynamics description in a simple model for granular compaction. Physica A 275, 310–324 (2000).

    Article  CAS  Google Scholar 

  32. Brey, J. J., Padros, A. & Sanchez-Rey, B. Hysteresis in vibrated granular media. Physica A 284, 277–296 (2000).

    Article  Google Scholar 

  33. Dean, D. & Lefèvre, A. Tapping spin glasses and ferromagnets on random graphs. Phys. Rev. Lett. 86, 5639–5642 (2001).

    Article  CAS  Google Scholar 

  34. Berg, J., Franz, S. & Sellitto, M. Testing the edwards hypotheses in spin systems under tapping dynamics. Eur. Phys. J B 26, 349–356 (2002).

    CAS  Google Scholar 

  35. Fierro, A., Nicodemi, M. & Coniglio, A. Thermodynamics and statistical mechanics of frozen systems in inherent states. Phys. Rev. E 66, 061301 (2002).

    Article  CAS  Google Scholar 

  36. Tarjus, G. & Viot, P. Statistical mechanical description of the parking lot model for vibrated granular materials. Phys. Rev. E 69, 011307 (2004).

    Article  CAS  Google Scholar 

  37. Tarjus, G. & Viot, P. in Unifying Concepts in Granular Media and Glasses (eds Coniglio, A., Fierro, A., Herrmann, H. J. & Nicodemi, M.) Ch. 4 (Amsterdam, 2004).

    Google Scholar 

  38. Nicodemi, M. Dynamical response functions in models of vibrated granular media. Phys. Rev. E 82, 3734–3737 (1999).

    CAS  Google Scholar 

  39. Coniglio, A. & Nicodemi, M. A statistical mechanics approach to the inherent states of granular media. Physica A 296, 451–459 (2001).

    Article  Google Scholar 

  40. Makse, H. A. & Kurchan, J. Testing the thermodynamic approach to granular matter with a numercial model of a decisive experiment. Nature 415, 614–617 (2002).

    Article  CAS  Google Scholar 

  41. Smedt, D. D., Godrèche, C. & Luck, J. Metastable states of the ising chain with Kawasaki dynamics. Eur. Phys. J. B 32, 215–225 (2003).

    Article  CAS  Google Scholar 

  42. Fierro, A., Nicodemi, M. & Coniglio, A. Equilibrium distribution of the inherent states and their dynamics in glassy systems and granular media. Europhys. Lett. 59, 642–647 (2002).

    Article  CAS  Google Scholar 

  43. Nicodemi, M., Fierro, A. & Coniglio, A. Segregation in hard spheres mixtures under gravity. an extension of edwards approach with two thermodynamical parameters. Europhys. Lett. 60, 684–690 (2002).

    Article  CAS  Google Scholar 

  44. Barrat, A., Kurchan, J., Loreto, V. & Sellitto, M. Edwards' measures for powders and glasses. Phys. Rev. Lett. 85, 5034–5037 (2000).

    Article  CAS  Google Scholar 

  45. Bouchaud, J., Cugliandolo, L., Kurchan, J. & Mezard, M. in Spin-glasses and Random Fields (ed. Young, A.) Ch. 6 (World Scientific, 1997).

    Google Scholar 

  46. Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997).

    Article  CAS  Google Scholar 

  47. Cugliandolo, L. F. & Kurchan, J. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett. 71, 173–176 (1993).

    Article  CAS  Google Scholar 

  48. Barrat, A., Kurchan, J., Loreto, V. & Sellitto, M. Edward's measure: a thermodynamic construction for dense granular media and glasses. Phys. Rev. E 63, 051301 (2001).

  49. Colizza, V., Barrat, A. & Loreto, V. Definition of temperature in dense granular media. Phys. Rev. E 65, 050301 (2002).

    Article  CAS  Google Scholar 

  50. Kadanoff, L. Built upon sand. Theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435–444 (1999).

    Article  Google Scholar 

  51. Tarzia, M., Candia, A. D., Fierro, A., Nicodemi, M. & Coniglio, A. Glass transition in granular media. Europhys. Lett. 66, 531–537 (2004).

    Article  CAS  Google Scholar 

  52. Biroli, G. & Mézard, M. Lattice glass models. Phys. Rev. Lett. 88, 025501 (2002).

    Article  CAS  Google Scholar 

  53. Toninelli, C., Biroli, G. & Fischer, D. Spatial structures and dynamics of kinetically constrained models of glasses. Phys. Rev. Lett. 92, 185504 (2004).

    Article  CAS  Google Scholar 

  54. Richard, P. et al. Analysis by x-ray microtomography of a granular packing undergoing compaction. Phys. Rev. E 68, 020301 (2003).

    Article  CAS  Google Scholar 

  55. Aste, T., Saadatfar, M., Sakellariou, A. & Senden, T. Investigating the geometrical structure of disordered sphere packings. Physica A 339, 16–23 (2004).

    Article  Google Scholar 

  56. Pouliquen, O., Belzons, M. & Nicolas, M. Fluctuating particle motion during shear induced granular compaction. Phys. Rev. Lett. 91, 014301 (2003).

    Article  CAS  Google Scholar 

  57. Marty, G. & Dauchot, O. Subdiffusion and cage effect in a sheared granular material. Preprint condmat/0407017 (2004); Phys. Rev. Lett. (submitted).

  58. Toiya, M., Stambaugh, J. & Losert, W. Transient and oscillatory granular shear flow. Phys. Rev. Lett. 93, 088001 (2004).

    Article  CAS  Google Scholar 

  59. Sastry, S., Debenedetti, P. G. & Stillinger, F. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Richard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, P., Nicodemi, M., Delannay, R. et al. Slow relaxation and compaction of granular systems. Nature Mater 4, 121–128 (2005). https://doi.org/10.1038/nmat1300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing