Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electromagnetic, atomic structure and chemistry changes induced by Ca-doping of low-angle YBa2Cu3O7–δ grain boundaries

Abstract

Practical high-temperature superconductors must be textured to minimize the reduction of the critical current density Jgb at misoriented grain boundaries. Partial substitution of Ca for Y in YBa2Cu3O7–δ has shown significant improvement in Jgb but the mechanisms are still not well understood. Here we report atomic-scale, structural and analytical electron microscopy combined with transport measurements on 7° [001]-tilt Y0.7Ca0.3Ba2Cu3O7–δ and YBa2Cu3O7–δ grain boundaries, where the dislocation cores are well separated. We show that the enhanced carrier density, higher Jgb and weaker superconductivity depression at the Ca-doped boundary result from a strong, non-monotonic Ca segregation and structural rearrangements on a scale of 1 nm near the dislocation cores. We propose a model of the formation of Ca2+ solute atmospheres in the strain and electric fields of the grain boundary and show that Ca doping expands the dislocation cores yet enhances Jgb by improving the screening and local hole concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltage–current characteristics.
Figure 2: GB facet structure from the micrometre to the nanoscale.
Figure 3: Atomic structures of dislocation cores for pure and 0.3Ca-doped [001]-tilt YBCO grain boundaries.
Figure 4: Ca segregation at the GB of the 0.3Ca-doped sample and Ca concentration variations perpendicular to and along the GB plane.
Figure 5: Oxygen EELS spectra measured on the pure and 0.3Ca-doped GBs.
Figure 6: Surface plot of the distribution of Ca2+ solute ions near a periodic chain of edge dislocations in a 7° GB calculated from equation (1).

Similar content being viewed by others

References

  1. Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 (2001).

    Article  CAS  Google Scholar 

  2. Verebelyi, D. T. et al. Low angle grain boundary transport in YBa2Cu3O7–δ coated conductors. Appl. Phys. Lett. 76, 1755–1757 (2000).

    Article  CAS  Google Scholar 

  3. Feldmann, D. M. et al. Influence of nickel substrate grain structure on YBa2Cu3O7–δ supercurrent connectivity in deformation-textured coated conductors. Appl. Phys. Lett. 77, 2906–2908 (2000).

    Article  CAS  Google Scholar 

  4. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  CAS  Google Scholar 

  5. Arendt, P. N. & Foltyn, S. R. Biaxially textured IBAD-MgO templates for YBCO-coated conductors. Mater. Res. Soc. Bull. 29, 543–550 (2004).

    Article  CAS  Google Scholar 

  6. Iijima, Y. et al. Research and development of biaxially textured IBAD-GZO templates for coated superconductors. Mater. Res. Soc. Bull. 29, 564–571 (2004).

    Article  CAS  Google Scholar 

  7. Goyal, A., Paranthaman, M. P. & Schoop, U. The RABiTS Approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. Mater. Res. Soc. Bull. 29, 552–560 (2004).

    Article  CAS  Google Scholar 

  8. Hammerl, G. et al. Enhanced supercurrent density in polycrystalline YBa2Cu3O7–δ at 77 K from calcium doping of grain boundaries. Nature 407, 162–164 (2000).

    Article  CAS  Google Scholar 

  9. Daniels, G. A., Gurevich, A. & Larbalestier, D. C. Improved strong magnetic field performance of low angle grain boundaries of calcium and oxygen overdoped YBa2Cu3O7–δ . Appl. Phys. Lett. 77, 3251–3253 (2000).

    Article  CAS  Google Scholar 

  10. Schmehl, A. et al. Doping induced enhancement of the critical currents of grain boundaries in YBa2Cu3O7–δ . Europhys. Lett. 47, 110–115 (1999).

    Article  CAS  Google Scholar 

  11. Guth, K., Krebs, H. U., Freyhardt, H. C. & Jooss, Ch. Modification of transport properties in low-angle grain boundaries via calcium doping of YBa2Cu3Ox thin films. Phys. Rev. B 64, R140508–140512 (2001).

    Article  Google Scholar 

  12. Weber, A., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Ca-doping-induced enhancement of the critical currents of coated conductors grown by ion-beam-assisted deposition. Appl. Phys. Lett. 82, 772–774 (2003).

    Article  CAS  Google Scholar 

  13. Kucera, J. T. & Bravman, J. C. Transport characterization of calcium-doped YBa2Cu3O7–δ thin films. Phys. Rev. B 51, 8582–8590 (1995).

    Article  CAS  Google Scholar 

  14. Gurevich, A. & Pashitski, E. A. Current transport through low-angle grain boundaries in high-temperature superconductors. Phys. Rev. B 57, 13878–13893 (1998).

    Article  CAS  Google Scholar 

  15. Schofield, M. A., Beleggia, M., Zhu, Y., Guth, K. & Jooss, C. Direct evidence for negative grain boundary potential in Ca-doped and undoped YBa2Cu3O7–δ . Phys. Rev. Lett. 92, 195502 (2004).

    Article  Google Scholar 

  16. Gurevich, A. et al. Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors. Phys. Rev. Lett. 88, 097001 (2002).

    Article  CAS  Google Scholar 

  17. Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H.-J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    Article  CAS  Google Scholar 

  18. Kirkland, E. J., Loane R. F. & Silcox, J. Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987).

    Article  Google Scholar 

  19. Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd edn (Plenum, New York, 1996).

    Book  Google Scholar 

  20. Babcock, S. E. et al. A TEM-EELS study of hole concentrations near strongly and weakly coupled grain boundaries in electromagnetically characterized YBa2Cu3Ox bicrystals. Physica C 227, 183–196 (1994).

    Article  CAS  Google Scholar 

  21. Browning, N. D. et al. The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7–δ thin films. Physica C 294, 183–193 (1998).

    Article  CAS  Google Scholar 

  22. Flewitt, P. E. J. & Wild, R. K. Grain Boundaries: Their Microstructure and Chemistry (Wiley, Chichester, 2001).

    Google Scholar 

  23. Udler, D. & Seidman, D. N. Congruent phase transition at a twist boundary induced by solute segregation. Phys. Rev. Lett. 77, 3379–3382 (1996).

    Article  CAS  Google Scholar 

  24. Maiti, A., Chisholm, M. F., Pennycook, S. J. & Pantelides, S. T. Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77, 1306–1309 (1996).

    Article  CAS  Google Scholar 

  25. Yan, Y. et al. Impurity-Induced structural transformation of a MgO grain boundary. Phys. Rev. Lett. 81, 3675–3678 (1998).

    Article  CAS  Google Scholar 

  26. Gurevich, A. & Pashitskii, E. A. Enhancement of superconductivity at structural defects in high-temperature superconductors. Phys. Rev. B 56, 6213–6225 (1997).

    Article  CAS  Google Scholar 

  27. Su, H. & Welch, D. O. The effects of space charge, dopants, and strain fields on surfaces and grain boundaries in YBCO compounds. Supercond. Sci. Technol. 18, 24–34 (2005).

    Article  CAS  Google Scholar 

  28. Hirth, J. B. & Lothe, A. Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  29. Berenov, A. et al. Ca doping of grain boundaries. Physica C 372, 1059–1062 (2002).

    Article  Google Scholar 

  30. James, E. M. & Browning, N D. Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125–129 (1999).

    Article  CAS  Google Scholar 

  31. Klie, R. et al. Enhanced current transport at grain boundaries in high-Tc superconductors. Nature (2005); 10.1038/nature03644.

Download references

Acknowledgements

We are grateful to James Buban and Nigel Browning, formerly of the University of Illinois at Chicago, for experimental help, discussions and for access to the JEOL2010F there. We thank Steve Pennycook from ORNL for discussions. The work was supported by AFOSR under grant F49620-03-01-0429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Larbalestier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Daniels, G., Feldmann, D. et al. Electromagnetic, atomic structure and chemistry changes induced by Ca-doping of low-angle YBa2Cu3O7–δ grain boundaries. Nature Mater 4, 470–475 (2005). https://doi.org/10.1038/nmat1394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing