Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A density-driven phase transition between semiconducting and metallic polyamorphs of silicon

Abstract

Amorphous and crystalline forms of silicon are well-known, tetrahedrally coordinated semiconductors. High-pressure studies have revealed extensive polymorphism among various metallic crystal structures containing atoms in six-, eight- and 12-fold coordination1,2. Melting silicon at ambient or high pressure results in a conducting liquid, in which the average coordination is greater than four (ref. 3). This liquid cannot normally be quenched to a glass, because of rapid crystallization to the diamond-structured semiconductor4. Solid amorphous silicon is obtained by synthesis routes such as chemical or physical vapour deposition that result in a tetrahedrally bonded semiconducting state. It has long been speculated that the amorphous solid and the liquid could represent two polymorphic forms of the amorphous state that are linked by density- or entropy-driven transformations5,6,7,8. Such polyamorphic transitions are recognized to occur among several different types of liquid and glassy systems9,10,11,12,13,14. Here we present experimental evidence for the occurrence of a density-driven polyamorphic transition between semiconducting and metallic forms of solid amorphous silicon. The experiments are combined with molecular dynamics simulations that map the behaviour of the amorphous solid on to that of the liquid state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical reflectivity and Raman spectroscopy of amorphous Si at high pressure.
Figure 2: Electrical resistance measurements of a-Si taken at high pressure in the DAC.
Figure 3: Stable and metastable phase relations related to the LDA–HDA transition in amorphous and supercooled liquid silicon.
Figure 4: Results of MD simulations of supercooled liquid silicon.

Similar content being viewed by others

References

  1. Liu, L. -G. & Bassett, W. A. Elements, Oxides and Silicates: High Pressure Phases with Implications for the Earth’s Interior (Clarendon, Oxford, 1987).

    Google Scholar 

  2. Jakse, N. et al. Structural changes on supercooling liquid silicon. Appl. Phys. Lett. 83, 4734–4737 (2003).

    Article  Google Scholar 

  3. Ansell, S. A., Krishnan, S., Felten, J. J. & Price, D. L. Structure of supercooled liquid silicon. J. Phys. Condens. Matter 10, L73–L78 (1998).

    Article  Google Scholar 

  4. McMillan, P. F. Relaxing times for silicon. Nature Mater. 3, 755–756 (2004).

    Article  Google Scholar 

  5. Aptekar, L. I. Phase transitions in noncrystalline germanium and silicon. Sov. Phys. Dokl. 24, 993–995 (1979).

    Google Scholar 

  6. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. & Jacobson, D. D. Heat of crystallization and melting-point of amorphous-silicon. Appl. Phys. Lett. 42, 698–700 (1983).

    Article  Google Scholar 

  7. Sastry, S. & Angell, C. A. Liquid-liquid phase transition in supercooled silicon. Nature Mater. 2, 739–743 (2003).

    Article  Google Scholar 

  8. Deb, S. K., Wilding, M. C., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphisation and an amorphous-amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    Article  Google Scholar 

  9. Ponyatovsky, E. G. & Barkalov, O. I. Pressure-induced amorphous phases. Mater. Sci. Rep. 8, 147–191 (1992).

    Article  Google Scholar 

  10. Brazhkin, V. V., Popova, S. V. & Voloshin, R. N. High-pressure transformations in simple melts. High Pressure Res. 15, 267–305 (1997).

    Article  Google Scholar 

  11. Poole, P. H., Grande, T., Angell, C. A. & McMillan, P. F. Polymorphic phase transitions in liquids and glasses. Science 275, 322–323 (1997).

    Article  Google Scholar 

  12. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  Google Scholar 

  13. Katayama, Y. et al. A first-order liquid-liquid phase transition in phosphorous. Nature 403, 170–173 (2000).

    Article  Google Scholar 

  14. McMillan, P. F. Polyamorphic transformations in liquids and glasses. J. Mater. Chem. 14, 1506–1512 (2004).

    Article  Google Scholar 

  15. McMillan, P. F. et al. Solid state synthesis of amorphous and nanocrystalline Si and Ge by a chemical metathesis route. J. Solid State Chem. 178, 937–949 (2005).

    Article  Google Scholar 

  16. Brodsky, M. H. & Lurio, A. Infrared vibrational spectra of amorphous Si and Ge. Phys. Rev. B 9, 1646–1651 (1974).

    Article  Google Scholar 

  17. Shuker, R. & Gammon, R. W. Raman scattering selection-rule breaking and the density of states in amorphous materials. Phys. Rev. Lett. 25, 222–225 (1970).

    Article  Google Scholar 

  18. Gaál-Nagy, K. et al. Temperature and dynamical effects on the high-pressure cubic-diamond β -tin phase transition in Si and Ge. Phys. Status. Solidi b 211, 275–280 (1999).

    Article  Google Scholar 

  19. Angell, C. A., Borick, S. A. & Grabow, M. Glass transitions and first-order liquid-metal-semiconductor transitions in 4-5-6 covalent systems. J. Non-Cryst. Solids 205–207, 463–471 (1999).

    Google Scholar 

  20. Shimomura, O. et al. Pressure-induced semiconductor-metal transitions in amorphous Si and Ge. Phil. Mag. 29, 547–558 (1974).

    Article  Google Scholar 

  21. Imai, M., Mitamura, T., Yaoita, K. & Tsuji, K. Pressure-induced phase transition of crystalline and amorphous silicon and germanium at low temperatures. High Pressure Res. 15, 167–189 (1996).

    Article  Google Scholar 

  22. Rapoport, E. Model for melting curve maxima at high pressure. J. Chem. Phys. 46, 2891–2894 (1967).

    Article  Google Scholar 

  23. Wilson, M. & McMillan, P. F. Crystal-liquid phase relations in silicon at negative pressure. Phys. Rev. Lett. 90, 135703–135707 (2003).

    Article  Google Scholar 

  24. Moynihan, C. T. & Angell, C. A. Bond-lattice or excitation model analysis of the configurational entropy of molecular liquids. J. Non-Cryst. Solids 274, 131–138 (2000).

    Article  Google Scholar 

  25. Hedler, A., Klaumünzer, S. L. & Wesch, W. Amorphous silicon exhibits a glass transition. Nature Mater. 3, 804–809 (2004).

    Article  Google Scholar 

  26. Stillinger, F. H. & Weber, T. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985).

    Article  Google Scholar 

  27. Duranduru, M. & Drabold, D. A. Ab initio simulation of first-order amorphous-to-amorphous phase transition of silicon. Phys. Rev. B 64, 014101 (2001).

    Article  Google Scholar 

  28. Frenkel, D. & Smit, B. Understanding Molecular Simulation (Academic, New York, 1996).

    Google Scholar 

  29. Vink, R. L. C., Barkema, G. T. & van der Weg, W. F. Raman spectra and structure of amorphous Si. Phys. Rev. B 63, 115210 (2001).

    Article  Google Scholar 

  30. Principi, E. et al. Polyamorphic transition of germanium under pressure. Phys. Rev. B 69, 201201(R) (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. McMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, P., Wilson, M., Daisenberger, D. et al. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Mater 4, 680–684 (2005). https://doi.org/10.1038/nmat1458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing