Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carrier-controlled ferromagnetism in transparent oxide semiconductors

Abstract

The search for an ideal magnetic semiconductor with tunable ferromagnetic behaviour over a wide range of doping or by electrical gating is being actively pursued as a major step towards realizing spin electronics. A magnetic semiconductor having a high Curie temperature, capable of independently controlled carrier density and magnetic doping, is crucial for developing spin-based multifunctional devices. Cr-doped In2O3 is such a unique system, where the electrical and magnetic behaviour—from ferromagnetic metal-like to ferromagnetic semiconducting to paramagnetic insulator—can be controllably tuned by the defect concentration. An explicit dependence of magnetic interaction leading to ferromagnetism on the carrier density is shown. A carrier-density-dependent high Curie temperature of 850–930 K has been measured, in addition to the observation of clear magnetic domain structures in these films. Being optically transparent with the above optimal properties, Cr-doped In2O3 emerges as a viable candidate for the development of spin electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray pattern and HRXTEM image of Cr:IO film.
Figure 2: Electrical transport properties of IO and Cr:IO films.
Figure 3: Magnetization data for Cr:IO, IO films and the substrate.
Figure 4: Magnetization and anomalous Hall effect data for 2% Cr:IO films.
Figure 5: MFM images and MH data for Cr:IO films.

Similar content being viewed by others

References

  1. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  Google Scholar 

  2. Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    Article  Google Scholar 

  3. Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001).

    Article  Google Scholar 

  4. Ogale, S. B. et al. High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ . Phys. Rev. Lett. 91, 077205 (2003).

    Article  Google Scholar 

  5. Coey, J. M. D., Douvalis, A. P., Fitzgerald, C. B. & Venkatesan, M. Ferromagnetism in Fe-doped SnO2 films. Appl. Phys. Lett. 84, 1332–1334 (2004).

    Article  Google Scholar 

  6. Sharma, P. et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn doped ZnO. Nature Mater. 2, 673–677 (2003).

    Article  Google Scholar 

  7. Philip, J. et al. High-temperature ferromagnetism in manganese-doped indium-tin oxide films. Appl. Phys. Lett. 85, 777–779 (2004).

    Article  Google Scholar 

  8. Shinde, S. R. et al. Ferromagnetism in laser-deposited anatase Ti1−xCoxO2−δ films. Phys. Rev. B 67, 115211 (2003).

    Article  Google Scholar 

  9. Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater. 4, 173–179 (2005).

    Article  Google Scholar 

  10. Kittilstved, K. R., Norberg, N. S. & Gamelin, D. R. Chemical manipulation of high- Tc ferromagnetism in ZnO diluted magnetic semiconductors. Phys. Rev. Lett. 94, 147209 (2005).

    Article  Google Scholar 

  11. Hayashi, T., Hashimoto, Y., Katsumoto, S. & Iye, Y. Effect of low-temperature annealing on transport and magnetism of diluted magnetic semiconductor (Ga, Mn)As. Appl. Phys. Lett. 78, 1691–1693 (2001).

    Article  Google Scholar 

  12. Potashnik, S. J. et al. Effects of annealing time on defect-controlled ferromagnetism in GaMnAs. Appl. Phys. Lett. 79, 1495–1497 (2001).

    Article  Google Scholar 

  13. Dietl, T. et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  Google Scholar 

  14. Durst, A. C., Bhatt, R. N. & Wolff, P. A. Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B 65, 235205 (2002).

    Article  Google Scholar 

  15. Kaminski, A. & Das Sarma, S. Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).

    Article  Google Scholar 

  16. Sluiter, M. H. F. et al. First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys. Rev. Lett. 94, 187204 (2005).

    Article  Google Scholar 

  17. Chopra, K. L., Major, S. & Pandya, D. K. Transparent conductors—a status review. Thin Solid Films 102, 1–46 (1983).

    Article  Google Scholar 

  18. Hartnagel, H. L., Dawar, A. L., Jain, A. K. & Jagadish, C. Semiconducting Transparent Thin Films (Institute of Physics, Bristol, 1995).

    Google Scholar 

  19. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–945 (1969).

    Article  Google Scholar 

  20. Urushibara, A. et al. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3 . Phys. Rev. B 51, 14103 (1995).

    Article  Google Scholar 

  21. Mott, N. F. Conduction in Noncrystalline Materials (Oxford Univ. Press, Oxford, 1987).

    Google Scholar 

  22. Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, New York, 1996).

    Google Scholar 

  23. Chien, C. L. & Westgate, C. R. (eds) The Hall Effect and Its Applications (Plenum, New York, 1980).

  24. Ingle, N. J. C., Hammond, R. H. & Beasley, M. R. Growth of the Cr oxides via activated oxygen reactive molecular beam epitaxy: Comparison of the Mo and W oxides. J. Appl. Phys. 89, 4631–4635 (2001).

    Article  Google Scholar 

  25. Ranno, L., Barry, A. & Coey, J. M. D. Production and magnetotransport properties of CrO2 films. J. Appl. Phys. 81, 5774–5776 (1997).

    Article  Google Scholar 

  26. Mofor, A. C. et al. Magnetic property investigations on Mn-doped ZnO layers on sapphire. Appl. Phys. Lett. 87, 062501 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Meservey, S. Foner and R. O’Handley for carefully checking the manuscript, and giving us valuable suggestions. We also thank D. Heiman for allowing us to use the SQUID at Northeastern University. This work is supported by a KIST–MIT grant, and partially supported by CMI funds at MIT and NSF. The research work carried out at Boise State University was supported, in part, by grants from the NSF-CAREER program (DMR-0449639) and the DoE-EPSCoR program (DE-FG02-04ER46142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Philip or J. S. Moodera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philip, J., Punnoose, A., Kim, B. et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nature Mater 5, 298–304 (2006). https://doi.org/10.1038/nmat1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing