Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications

Abstract

All battery technologies are known to suffer from kinetic problems linked to the solid-state diffusion of Li in intercalation electrodes, the conductivity of the electrolyte in some cases and the quality of interfaces. For Li-ion technology the latter effect is especially acute when conversion rather than intercalation electrodes are used. Nano-architectured electrodes are usually suggested to enhance kinetics, although their realization is cumbersome. To tackle this issue for the conversion electrode material Fe3O4, we have used a two-step electrode design consisting of the electrochemically assisted template growth of Cu nanorods onto a current collector followed by electrochemical plating of Fe3O4. Using such electrodes, we demonstrate a factor of six improvement in power density over planar electrodes while maintaining the same total discharge time. The capacity at the 8C rate was 80% of the total capacity and was sustained over 100 cycles. The origin of the large hysteresis between charge and discharge, intrinsic to conversion reactions, is discussed and approaches to reduce it are proposed. We hope that such findings will help pave the way for the use of conversion reaction electrodes in future-generation Li-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The electrochemical cell and the nanostructured current collector.
Figure 2: XRD patterns and scanning electron micrographs of as-prepared copper nanopillar Fe3O4 assemblies.
Figure 3: Potential-capacity profiles for the as-prepared copper-supported Fe3O4 deposits galvanostatically cycled at a rate of 1 Li+/2 h versus Li.
Figure 4: Capacity retention.
Figure 5: Rate capability.
Figure 6: ln(Iapplied) versus ΔE and Iapplied versus ΔE.

Similar content being viewed by others

References

  1. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  Google Scholar 

  2. Tarascon, J.-M., Grugeon, S., Laruelle, S., Larcher, D. & Poizot, P. in Lithium Batteries – Science and Technology (eds Nazri, G. A. & Pistoia, G.) Ch. 7 (Kluwer Academic, Boston, 2003).

    Google Scholar 

  3. Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J.-M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212–A1217 (2002).

    Article  Google Scholar 

  4. Pereira, N., Klein, L. C. & Amatucci, G. G. The electrochemistry of Zn3N2 and LiZnN. A lithium reaction mechanism for metal nitride electrodes. J. Electrochem. Soc. 149, A262–A2717 (2002).

    Article  Google Scholar 

  5. Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. F. The mechanism of reversible lithium uptake in CoP3 at low potential: role of the anion. Electrochem. Commun. 4, 516–520 (2002).

    Article  Google Scholar 

  6. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).

    Article  Google Scholar 

  7. Whitehead, A. H., Elliott, J. M. & Owen, J. R. Nanostructured tin for use as a negative electrode material in Li-ion. J. Power Sources 81–82, 33–38 (1999).

    Article  Google Scholar 

  8. Kavan, L. & Grätzel, M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 5, A39–A42 (2002).

    Article  Google Scholar 

  9. Dewan, C. & Teeters, D. Vanadia xerogel nanocathodes used in lithium microbatteries. J. Power Sources 119–121, 310–315 (2003).

    Article  Google Scholar 

  10. Yan, H. et al. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for Lithium secondary batteries. J. Electrochem. Soc. 150, A1102–A1107 (2003).

    Article  Google Scholar 

  11. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997).

    Article  Google Scholar 

  12. Li, N., Patrissi, C. J. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000).

    Article  Google Scholar 

  13. Li, N., Mitchell, D. T., Lee, K.-P. & Martin, C. R. A nanostructured honeycomb carbon anode. J. Electrochem. Soc. 150, A979–A984 (2003).

    Article  Google Scholar 

  14. Patrissi, C. J. & Martin, C. R. Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146, 3176–3180 (1999).

    Article  Google Scholar 

  15. Patrissi, C. J. & Martin, C. R. Improving the volumetric energy densities of nanostructured V2O5 electrodes prepared using the template method. J. Electrochem. Soc. 148, A1247–A1253 (2001).

    Article  Google Scholar 

  16. Croce, F., Sides, C. R., Young, V. Y., Martin, C. R. & Scrosatti, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 8, A484–A487 (2005).

    Article  Google Scholar 

  17. Che, G., Jirage, K. B., Fisher, E. R., Martin, C. R. & Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 144, 4296–4302 (1997).

    Article  Google Scholar 

  18. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro 19, 975–983 (2005).

    Article  Google Scholar 

  19. Thackeray, M. M. & Coetzer, J. A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Mater. Res. Bull. 16, 591–597 (1981).

    Article  Google Scholar 

  20. Thackeray, M. M., David, W. I. F. & Goodenough, J. B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2). Mater. Res. Bull. 17, 785–793 (1982).

    Article  Google Scholar 

  21. Coey, J. M. D., Berkowitz, A. E., Balcells, Ll., Putris, F. F. & Parker, F. T. Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734–736 (1998).

    Article  Google Scholar 

  22. Martin, C. R. Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739–1746 (1996).

    Article  Google Scholar 

  23. Dobrev, D., Vetter, J. & Angert, N. Electrochemical preparation of metal microstructures on large areas of etched ion track membranes. Nucl. Instrum. Methods B 149, 207–212 (1999).

    Article  Google Scholar 

  24. Konishi, Y. et al. Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 559, 149–153 (2003).

    Article  Google Scholar 

  25. Leopold, S. et al. Electrochemical deposition of cylindrical Cu/Cu2O microstructures. Electrochim. Acta 47, 4393–4397 (2002).

    Article  Google Scholar 

  26. Valizadeh, S., George, J. M., Leisner, P. & Hultman, L. Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films 402, 262–271 (2002).

    Article  Google Scholar 

  27. Wendt, H. & Kreysa, G. Electrochemical Engineering (Springer, Berlin Heidelberg, 1999).

    Book  Google Scholar 

  28. Ueda, M. et al. Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim. Acta 48, 377–386 (2002).

    Article  Google Scholar 

  29. Oh, J., Tak, Y. & Lee, J. Electrochemically deposited nanocolumnar junctions of Cu2O and ZnO on Ni nanowires. Electrochem. Solid-State Lett. 8, C81–C84 (2005).

    Article  Google Scholar 

  30. Kothari, H. M. et al. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine. J. Mater. Res. 21, 293–301 (2006).

    Article  Google Scholar 

  31. Mitra, S., Poizot, P., Finke, A. & Tarascon, J.-M. Growth and electrochemical characterization vs. Li of Fe3O4 electrodes made by electrodeposition. Adv. Funct. Mater. in the press.

  32. Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sources 52, 211–216 (1994).

    Article  Google Scholar 

  33. Tarascon, J.-M., Gozdz, A. S., Schumtz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ion. 86–88, 49–54 (1996).

    Article  Google Scholar 

  34. Bard, J. A. & Faulkner, L. R. Electrochemical Methods (Wiley, New York, 2001).

    Google Scholar 

  35. Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb . J. Electrochem. Soc. 124, 1569–1578 (1977).

    Article  Google Scholar 

  36. Novák, P. CuO cathode in lithium cells–-II. Reduction mechanism of CuO. Electrochim. Acta 30, 1687–1692 (1985).

    Article  Google Scholar 

  37. Kang, Y.-M. et al. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 50, 3667–3673 (2005).

    Article  Google Scholar 

  38. Kutty, T. R. N. & Murthy, A. R. V. Solid state reaction between urea nitrate and tricalcium phosphate. Mechanistic study. Indian J. Technol. 12, 447–450 (1974).

    Google Scholar 

  39. Dustmann, C.-H. Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004).

    Article  Google Scholar 

  40. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to D. Murphy for helpful comments and discussions on this manuscript and the European Network of Excellence 'ALISTORE' for providing the ground scientific discussions to ignite such a study. The authors are deeply grateful to the EU for co-financing ALISTORE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taberna, P., Mitra, S., Poizot, P. et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater 5, 567–573 (2006). https://doi.org/10.1038/nmat1672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing