Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural properties of 〈111〉B -oriented III–V nanowires

Abstract

Controlled growth of nanowires is an important, emerging research field with many applications in, for example, electronics, photonics, and life sciences. Nanowires of zinc blende crystal structure, grown in the 〈111〉B direction, which is the favoured direction of growth, usually have a large number of twin-plane defects. Such defects limit the performance of optoelectronic nanowire-based devices. To investigate this defect formation, we examine GaP nanowires grown by metal-organic vapour-phase epitaxy. We show that the nanowire segments between the twin planes are of octahedral shape and are terminated by {111} facets, resulting in a microfaceting of the nanowires. We discuss these findings in a nucleation context, where we present an idea on how the twin planes form. This investigation contributes to the understanding of defect formation in nanowires. One future prospect of such knowledge is to determine strategies on how to control the crystallinity of nanowires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystalline structure of 〈111〉B GaP nanowires as determined from HRTEM.
Figure 2: Regular octahedra with two different slices, or ways of truncation.
Figure 3: ATOMS models of nanowires in three different projections.
Figure 4: Histograms of segment thicknesses for six different wires grown at three different temperatures.
Figure 5: Exponential distributions fitted to the segment thickness frequency data at three temperatures.

Similar content being viewed by others

References

  1. Samuelson, L. et al. Semiconductor nanowires for 0D and 1D physics and applications. Physica E 25, 313–318 (2004).

    Article  Google Scholar 

  2. Cui, Y., Zhong, Z., Wang, D., Wang, W. & Lieber, C. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  Google Scholar 

  3. Thelander, C. et al. Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052–2054 (2003).

    Article  Google Scholar 

  4. Varfolomeev, A., Pokalyakin, V., Tereshin, S., Zaretsky, D. & Bandyopadhyay, S. Switching time of nanowire memory. J. Nanosci. Nanotechnol. 5, 753–758 (2005).

    Article  Google Scholar 

  5. Mårtensson, T. et al. Epitaxial III-V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

    Article  Google Scholar 

  6. Evoy, S. et al. Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron. Eng. 75, 31–42 (2004).

    Article  Google Scholar 

  7. Davidson, F. M., Wiacek, R. & Korgel, B. A. Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires. Chem. Mater. 17, 230–233 (2005).

    Article  Google Scholar 

  8. Verheijen, M. A., Immink, G., de Smet, T., Borgström, M. T. & Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 128, 1353–1359 (2006).

    Article  Google Scholar 

  9. Bhunia, S. et al. Vapor-liquid-solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy. Thin Solid Films 464–465, 244–247 (2004).

    Article  Google Scholar 

  10. Li, Q. et al. Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004).

    Article  Google Scholar 

  11. Chen, H. et al. Transmission electron microscopy study of pseudoperiodically twinned Zn2SnO4 nanowires. J. Phys. Chem. B 109, 2573–2577 (2005).

    Article  Google Scholar 

  12. Zhou, G. W. & Zhang, Z. Transmission electron microscopy study of Si nanowires. Appl. Phys. Lett. 73, 677–679 (1998).

    Article  Google Scholar 

  13. Zhou, G. W., Zhang, Z. & Yu, D. Growth morphology and micro-structural aspects of Si nanowires synthesized by laser ablation. J. Cryst. Growth 197, 129–135 (1999).

    Article  Google Scholar 

  14. Ross, F., Tersoff, J. & Reuter, M. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005).

    Article  Google Scholar 

  15. Schubert, L. et al. Silicon nanowhiskers grown on <111> Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004).

    Article  Google Scholar 

  16. Hurle, D. T. J. A mechanism for twin formation during Czochralski and encapsulated vertical Bridgeman growth of III-V compound semiconductors. J. Cryst. Growth 147, 239–250 (1995).

    Article  Google Scholar 

  17. Wacaser, B. A., Deppert, K., Karlsson, L. S., Samuelson, L. & Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 287, 504–508 (2006).

    Article  Google Scholar 

  18. Heddle, M. F. The geognosy and mineralogy of Scotland. Miner. Mag. 5, 271–324 (1884).

    Google Scholar 

  19. Holt, D. B. Polarity reversal and symmetry in semiconducting compounds with the sphalerite and wurtzite structures. J. Mater. Sci. 19, 439–446 (1984).

    Article  Google Scholar 

  20. Chen, T. P. et al. Study of twins in GaAs, GaP and InAs crystals. J. Cryst. Growth 118, 109–116 (1992).

    Article  Google Scholar 

  21. Cohen, D., McKernan, S. & Carter, C. Characterization of the absolute crystal polarity across twin boundaries in gallium phosphide using convergent-beam electron diffraction. Microsc. Microanal. 5, 173–186 (1999).

    Article  Google Scholar 

  22. Mikkelsen, A. et al. Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nature Mater. 3, 519–523 (2004).

    Article  Google Scholar 

  23. Björk, M. T. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

    Article  Google Scholar 

  24. Markov, I. V. Crystal Growth For Beginners (World Scientific, Singapore, 2003).

    Book  Google Scholar 

  25. Voronkov, V. V. Supercooling at the face developing on a rounded crystalization front. Sov. Phys.-Crystallogr. 17, 807–813 (1973).

    Google Scholar 

  26. Hurle, D. T. J. in Sir Charles Frank 80th Birthday Tribute (eds Chambers, R. G., Enderby, J., Keller, A., Lang, A. R. & Steeds, J. W.) 188–206 (Hilger, Bristol, 1991).

    Google Scholar 

  27. van Bueren, H. G. Imperfections in Crystals (North Holland, Amsterdam, 1960).

    Google Scholar 

  28. Gottschalk, H., Patzer, G. & Alexander, H. Stacking-fault energy and ionicity of cubic-III-V compounds. Phys. Status Solidi A 45, 207–217 (1978).

    Article  Google Scholar 

  29. Johansson, J., Svensson, C. P. T., Mårtensson, T., Samuelson, L. & Seifert, W. A mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005).

    Article  Google Scholar 

  30. Takeuchi, S. & Suzuki, K. Stacking fault energies of tetrahedrally coordinated crystals. Phys. Status Solidi A 171, 99–103 (1999).

    Article  Google Scholar 

  31. Krishnamachari, U. et al. Defect-free InP nanowires grown in [001] direction on InP(001). Appl. Phys. Lett. 85, 2077–2079 (2004).

    Article  Google Scholar 

  32. Magnusson, M. H., Deppert, K., Malm, J. O., Bovin, J. O. & Samuelson, L. Gold nanoparticles: production, reshaping, and thermal charging. J. Nanoparticle Res. 1, 243–251 (1999).

    Article  Google Scholar 

  33. Williams, B.D. & Carter, C.B. Transmission Electron Microscopy (Plenum, New York, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

This work was carried out within the Nanometer Structure Consortium in Lund and was supported by grants from the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation, the NoE SANDiE (EU contract No E500101-2), as well as the IP NODE (EU contract No 015783 NODE). We acknowledge R. Wallenberg, A. Mikkelsen, K. Dick, and S. Iyengar for valuable discussions and input to this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Johansson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, J., Karlsson, L., Patrik T. Svensson, C. et al. Structural properties of 〈111〉B -oriented III–V nanowires. Nature Mater 5, 574–580 (2006). https://doi.org/10.1038/nmat1677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing