Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity

Abstract

Nanoporous materials have attracted great technological interest during the past two decades, essentially due to their wide range of applications: they are used as catalysts, molecular sieves, separators and gas sensors as well as for electronic and electrochemical devices1,2,3,4,5. Most syntheses of nanoporous materials reported so far have focused on template-assisted bottom-up processes, including soft templating6,7,8,9,10 (chelating agents, surfactants, block copolymers and so on) and hard templating11,12 (porous alumina, carbon nanotubes and nanoporous materials) methods. Here, we exploit a mechanism implicitly occurring in lithium batteries at deep discharge13,14,15,16,17,18 to develop it into a room-temperature template-free method of wide applicability in the synthesis of not only transition metals but also metal oxides with large surface area and pronounced nanoporosity associated with unprecedented properties. The power of this top-down method is demonstrated by the synthesis of nanoporous Pt and RuO2, both exhibiting superior performance: the Pt prepared shows outstanding properties when used as an electrocatalyst for methanol oxidation, and the RuO2, when used as a supercapacitor electrode material, exhibits a distinctly better performance than that previously reported for non-hydrated RuO2 (refs 1920).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Electrochemical lithiation and delithiation.
Figure 3: Characterization of nanoporous Pt.
Figure 4: Characterization of nanoporous RuO2.

Similar content being viewed by others

References

  1. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  Google Scholar 

  2. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    Article  Google Scholar 

  3. Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    Article  Google Scholar 

  4. Scott, B. J., Wirnsberger, G. & Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chem. Mater. 10, 3140–3150 (2001).

    Article  Google Scholar 

  5. Bronstein, L. M., Weissenberger, M. C. & Antonietti, M. Mesoporous alumina and aluminosilica with Pd and Pt nanoparticles: structure and catalytic properties. Chem. Mater. 15, 2623–2631 (2003).

    Article  Google Scholar 

  6. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular-sieves synthesised by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  Google Scholar 

  7. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  Google Scholar 

  8. Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2005).

    Article  Google Scholar 

  9. Deshpande, A. S., Pinna, N., Smarsly, B., Antonietti, M. & Niederberger, M. Controlled assembly of preformed ceria nanocrystals into highly ordered 3D nanostructures. Small 1, 313–316 (2005).

    Article  Google Scholar 

  10. Ba, J. H., Polleux, J., Antonietti, M. & Niederberger, M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 17, 2509–2512 (2005).

    Article  Google Scholar 

  11. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn 38, 56–77 (1999).

    Article  Google Scholar 

  12. Wu, Y. Y. et al. Composite mesostructures by nano-confinement. Nature Mater. 3, 816–822 (2004).

    Article  Google Scholar 

  13. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative material for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  Google Scholar 

  14. Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J.-M. Rationalization of low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212–A1217 (2002).

    Article  Google Scholar 

  15. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).

    Article  Google Scholar 

  16. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites—High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).

    Article  Google Scholar 

  17. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).

    Article  Google Scholar 

  18. Zhang, D. W., Chen, C. H., Zhang, J. & Ren, F. Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers. Chem. Mater. 17, 5242–5245 (2005).

    Article  Google Scholar 

  19. Long, J. W., Swider, K. E., Merzbacher, C. I. & Rolison, D. R. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999).

    Article  Google Scholar 

  20. Subramanian, V., Hall, S. C., Smith, P. H. & Rambabu, B. Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ion. 175, 511–515 (2004).

    Article  Google Scholar 

  21. Polarz, S., Smarsly, B. & Schattka, J. H. Hierachical porous carbon structures from cellulose acetate fibers. Chem. Mater. 14, 2940–2945 (2002).

    Article  Google Scholar 

  22. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 5, 805–815 (2005).

    Article  Google Scholar 

  23. Arico, A. S., Bruce, P. G., Scrosati, B., Tarascon, J.-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–376 (2005).

    Article  Google Scholar 

  24. Schoonman, J. Nanostructured materials in solid state ionics. Solid State Ion. 135, 5–19 (2000).

    Article  Google Scholar 

  25. Carrette, L., Friedrich, K. A. & Stimming, U. Fuel cells: principles, types, fuels, and applications. ChemPhysChem 1, 162–193 (2000).

    Article  Google Scholar 

  26. Che, G., Lakshmi, B. B., Fisher, E. R. & Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998).

    Article  Google Scholar 

  27. Guo, Y.-G. et al. Tin/platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation. Adv. Mater. 17, 746–750 (2005).

    Article  Google Scholar 

  28. Ganesan, R. & Lee, J. S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew. Chem. Int. Edn 44, 6557–6560 (2005).

    Article  Google Scholar 

  29. Pereira, N., Dupont, L., Tarascon, J.-M., Klein, L. C. & Amatucci, G. G. Electrochemistry of Cu3N with lithium—a complex system with parallel processes. J. Electrochem. Soc. 150, A1273–A1280 (2003).

    Article  Google Scholar 

  30. Gillot, F. et al. Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries. Chem. Mater. 17, 6327–6337 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Max Planck Society and acknowledge support in the framework of the ENERCHEM project. The authors thank P. Kopold, A. Schulz and A. Fuchs for their technical support and H. Li and L. Z. Fan for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Guo Guo or Joachim Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S6 (PDF 2104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YS., Guo, YG., Sigle, W. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater 5, 713–717 (2006). https://doi.org/10.1038/nmat1709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing