Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature

Abstract

Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. In this work, we demonstrate the first observation of electrical control of antiferromagnetic domain structure in a single-phase multiferroic material at room temperature. High-resolution images of both antiferromagnetic and ferroelectric domain structures of (001)-oriented multiferroic BiFeO3 films revealed a clear domain correlation, indicating a strong coupling between the two types of order. The ferroelectric structure was measured using piezo force microscopy, whereas X-ray photoemission electron microscopy as well as its temperature dependence was used to detect the antiferromagnetic configuration. Antiferromagnetic domain switching induced by ferroelectric polarization switching was observed, in agreement with theoretical predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of (001)-oriented BiFeO3 crystal structure and the ferroelectric polarization (bold arrows) and antiferromagnetic plane (shaded planes).
Figure 2: PFM images showing polarization domain structures of (001)-oriented BiFeO3 film.
Figure 3: PEEM and in-plane PFM images taken in the same area of an as-grown BiFeO3 film.
Figure 4: Temperature dependence of normalized order parameters of BiFeO3.
Figure 5: PEEM and in-plane PFM images of the same area of a BiFeO3 film before and after electrical poling.

Similar content being viewed by others

References

  1. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  Google Scholar 

  2. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  Google Scholar 

  3. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  Google Scholar 

  4. Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  Google Scholar 

  5. Lottermoser, Th. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  Google Scholar 

  6. Nan, C. W., Liu, G., Liu, Y. & Chen, H. Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

    Article  Google Scholar 

  7. Ascher, E., Rieder, H., Schmid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

    Article  Google Scholar 

  8. Shastry, S., Srinivasan, G., Bichurin, M. I., Petrov, V. M. & Tatarenko, A. S. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Phys. Rev. B 70, 064416 (2004).

    Article  Google Scholar 

  9. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  Google Scholar 

  10. Hill, N. A. Why are there so few magnetic ferroelectrics. J. Phys. Chem. 104, 6694–6709 (2000).

    Article  Google Scholar 

  11. Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005).

    Article  Google Scholar 

  12. Kubel, F. & Schimid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 . Acta Crystallogr. B 46, 698–702 (1990).

    Article  Google Scholar 

  13. Fischer, P., Polomska, M., Sosnowska, I. & Szymanski, M. Temperature dependence of the crystal and magnetic structure of BiFeO3 . J. Phys. Solid State Phys. 13, 1931–1940 (1980).

    Article  Google Scholar 

  14. Michel, C., Moreau, J.-M., Achenbach, G. D., Gerson, R. & James, W. J. The atomic structure of BiFeO3 . Solid State Commun. 7, 701–704 (1969).

    Article  Google Scholar 

  15. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  Google Scholar 

  16. Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  Google Scholar 

  17. Li, J. F. et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004).

    Article  Google Scholar 

  18. Yun, K. Y. et al. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 96, 3399–3403 (2004).

    Article  Google Scholar 

  19. Yun, K. Y., Noda, M. & Okuyama, M. Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981–3983 (2003).

    Article  Google Scholar 

  20. Das, R. R. et al. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 88, 242904 (2006).

    Article  Google Scholar 

  21. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  22. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005).

    Article  Google Scholar 

  23. Thole, B. T., van der Laan, G. & Sawatzky, G. A. Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare-earth materials. Phys. Rev. Lett. 55, 2086–2088 (1985).

    Article  Google Scholar 

  24. Czekaj, S., Nolting, F., Heyderman, L. J., Willmott, P. R. & van der Laan, G. Sign dependence of the X-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films. Phys. Rev. B 73, 020401(R) (2006).

    Article  Google Scholar 

  25. Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

    Article  Google Scholar 

  26. Zavaliche, F. et al. Ferroelectric domain structure in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 182912 (2005).

    Article  Google Scholar 

  27. Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 252902 (2005).

    Article  Google Scholar 

  28. Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    Article  Google Scholar 

  29. Scholl, A., Ohldag, H., Nolting, F., Stöhr, J. & Padmore, H. A. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73, 1362–1366 (2002).

    Article  Google Scholar 

  30. Luning, J. et al. Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy. Phys. Rev. B 67, 214433 (2003).

    Article  Google Scholar 

  31. Yang, W. C., Rodriguez, B. J., Gruverman, A. & Nemanich, R. J. Polarization-dependent electron affinity of LiNbO3 surfaces. Appl. Phys. Lett. 85, 2316–2318 (2004).

    Article  Google Scholar 

  32. Tsuboi, T. Linear dichroism study of the structural phase transition of BaMnF4 . Phys. Rev. B 39, 2842–2845 (1989).

    Article  Google Scholar 

  33. Ederer, C. & Spaldin, N. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

    Article  Google Scholar 

  34. Ederer, C. & Spaldin, N. Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys. Rev. B 95, 224103 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by an ONR grant No. N00014-06-1-0008, N00014-05-1-0559 (CBE) monitored by Colin Wood and an ONR-MURI grant No. E-21-6RU-G4. This work was also supported by the National Science Foundation under grants DMR-0313764 (CBE) and ECS-0210449 (CBE) and a David & Lucile Packard Fellowship (CBE). Partial support from a LBL LDRD and a MARCO program is also gratefully acknowledged. C.E. and N.A.S. are supported by the NSF’s ‘Chemical Bonding Centers’ program, grant No. CHE-0434567 and made use of the central facilities provided by the NSF-MRSEC Award No. DMR05-20415.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Zhao or R. Ramesh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Scholl, A., Zavaliche, F. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater 5, 823–829 (2006). https://doi.org/10.1038/nmat1731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing