Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular computational elements encode large populations of small objects

Abstract

Since the introduction of molecular computation1,2, experimental molecular computational elements have grown3,4,5 to encompass small-scale integration6, arithmetic7 and games8, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size9 (about 1 nm) and large ‘on/off’ output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 μm) used for synthesis of combinatorial libraries10,11. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a ‘wash and watch’ protocol12. Our focus on converting molecular science into technology concerning analog sensors13,14, turns to digital logic devices in the present work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Truth tables, chemical structures and on-bead fluorescence behaviour of molecular logic gates.
Figure 2: Demonstration of single-bead logic operations.

Similar content being viewed by others

References

  1. de Silva, A. P., Gunaratne, H. Q. N. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993).

    Article  Google Scholar 

  2. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  Google Scholar 

  3. Raymo, F. M. Digital processing and communication with molecular switches. Adv. Mater. 14, 401–414 (2002).

    Article  Google Scholar 

  4. Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines: A Journey into the Nanoworld (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  5. de Silva, A. P. & McClenaghan, N. D. Molecular-scale logic gates. Chem. Eur. J. 10, 574–586 (2004).

    Article  Google Scholar 

  6. Szacilowski, K. Molecular logic gates based on pentacyanoferrate complexes: From simple gates to three-dimensional logic systems. Chem. Eur. J. 10, 2520–2528 (2004).

    Article  Google Scholar 

  7. Margulies, D., Melman, G. & Shanzer, A. A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc. 128, 4865–4871 (2006).

    Article  Google Scholar 

  8. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003).

    Article  Google Scholar 

  9. Uchiyama, S., McClean, G. D., Iwai, K. & de Silva, A. P. Membrane media create small nanospaces for molecular computation. J. Am. Chem. Soc. 127, 8920–8921 (2005).

    Article  Google Scholar 

  10. Lam, K. S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  Google Scholar 

  11. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. General-method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Prot. Res. 37, 487–493 (1991).

    Article  Google Scholar 

  12. Queen’s University of Belfast. Labelled solid support comprising fluorophore label. British patent 0506480.3 (2005).

  13. de Silva, A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997).

    Article  Google Scholar 

  14. www.osmetech.com.

  15. Brummel, C. L., Lee, I. N. W., Zhou, Y., Benkovic, S. J. & Winograd, N. A. mass spectrometric solution to the address problem of combinatorial libraries. Science 264, 399–402 (1994).

    Article  Google Scholar 

  16. Ohlmeyer, M. H. J. et al. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl Acad. Sci. USA 90, 10922–10926 (1993).

    Article  Google Scholar 

  17. Bioarray Solutions & Rutgers, The State University of New Jersey. Colour-encoding and in-situ interrogation of matrix-coupled chemical compounds. World patent WO 98/53093 (1998).

  18. Smith Kline Beecham Corp., Method of encoding a series of combinatorial libraries and developing structure-activity relationships. US patent 6,210,900 B1 (2001).

  19. Egner, B. J. et al. Tagging in combinatorial chemistry: The use of coloured and fluorescent beads. Chem. Commun. 735–736 (1997).

  20. Scott, R. H. & Balasubramaniam, S. Properties of fluorophores on solid phase resins; implications for screening, encoding and reaction monitoring. Bioorg. Med. Chem. Lett. 7, 1567–1572 (1997).

    Article  Google Scholar 

  21. Walt, D. L. Bead-based fiber-optic arrays. Science 287, 451–452 (2000).

    Article  Google Scholar 

  22. Battersby, B. J., Lawrie, G. A., Johnston, A. P. R. & Trau, M. Optical barcoding of colloidal suspensions: applications in genomics, proteomics and drug discovery. Chem. Commun. 1435–1441 (2002).

  23. Dickinson, T. A., Michael, K. L., Kauer, J. S. & Walt, D. R. Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 71, 2192–2198 (1999).

    Article  Google Scholar 

  24. Lavigne, J. J. et al. Solution-based analysis of multiple analytes by a sensor array: Toward the development of an “electronic tongue”. J. Am. Chem. Soc. 120, 6429–6430 (1998).

    Article  Google Scholar 

  25. Nicolaou, K. C., Xiao, X. Y., Parandoosh, Z., Senyei, A. & Nova, M. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Edn 34, 2289–2291 (1995).

    Article  Google Scholar 

  26. Moran, E. J. et al. Radiofrequency tag encoded combinatorial library method for discovery of tripeptide-substituted cinnamic acid of the protein tyrosine phosphatase. J. Am. Chem. Soc. 117, 10787–10788 (1995).

    Article  Google Scholar 

  27. Millman, J. & Grabel, A. Microelectronics (McGraw-Hill, London, 1988).

    Google Scholar 

  28. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  Google Scholar 

  29. Copeland, G. T. & Miller, S. J. A chemosensor-based approach to catalyst discovery in solution and on solid support. J. Am. Chem. Soc. 121, 4306–4307 (1999).

    Article  Google Scholar 

  30. Hayes, B. Am. Scientist 89, 490–494 (2001).

    Article  Google Scholar 

  31. Jin, N. et al. Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR. Electron Devices Lett. 25, 646–648 (2004).

    Article  Google Scholar 

  32. Keyes, R. W. Physics of digital devices. Rev. Mod. Phys. 61, 279–287 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

We thank DEL, EPSRC, Avecia Ltd, Invest NI (RTD COE 40), A. Lavery (Avecia Ltd), D. Corry (HMG Powder Coatings Ltd), M. Schroeder (Technical University, Graz), C. McCoy and D. Coulson (School of Pharmacy, QUB) for their support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prasanna de Silva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna de Silva, A., James, M., McKinney, B. et al. Molecular computational elements encode large populations of small objects. Nature Mater 5, 787–789 (2006). https://doi.org/10.1038/nmat1733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing