Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable Fröhlich polarons in organic single-crystal transistors

Abstract

In organic field-effect transistors (FETs), charges move near the surface of an organic semiconductor, at the interface with a dielectric. In the past, the nature of the microscopic motion of charge carriers—which determines the device performance—has been related to the quality of the organic semiconductor. Recently, it was discovered that the nearby dielectric also has an unexpectedly strong influence. The mechanisms responsible for this influence are not understood. To investigate these mechanisms, we have studied transport through organic single-crystal FETs with different gate insulators. We find that the temperature dependence of the mobility evolves from metallic-like to insulating-like with increasing dielectric constant of the insulator. The phenomenon is accounted for by a two-dimensional Fröhlich polaron model that quantitatively describes our observations and shows that increasing the dielectric polarizability results in a crossover from the weak to the strong polaronic coupling regime. This represents a considerable step forward in our understanding of transport through organic transistors, and identifies a microscopic physical process with a large influence on device performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-quality organic single-crystal transistors.
Figure 2: Gate-voltage dependence of the carrier mobility.
Figure 3: Temperature dependence of the carrier mobility.
Figure 4: Dependence of the threshold charge on temperature and dielectric constant of the gate insulator.
Figure 5: Comparison between experimental data and theory.

Similar content being viewed by others

References

  1. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin-film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  Google Scholar 

  2. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Khaffaf, S. M. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  Google Scholar 

  3. Stassen, A. F., de Boer, R. W. I., Iosad, N. N. & Morpurgo, A. F. Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl. Phys. Lett. 85, 3899–3901 (2004).

    Article  Google Scholar 

  4. Sundar, V. C. et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  Google Scholar 

  5. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  Google Scholar 

  6. Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    Article  Google Scholar 

  7. Mahan, G. D. Many-Particle Physics 2nd edn (Plenum, New York, 1990).

    Book  Google Scholar 

  8. Kirova, N. & Bussac, M. N. Self-trapping of electrons at the field-effect junction of a molecular crystal. Phys. Rev. B 68, 235312 (2003).

    Article  Google Scholar 

  9. de Boer, R. W. I., Gershenson, M. E., Morpurgo, A. F. & Podzorov, V. Organic single-crystal field-effect transistors. Phys. Status Solidi A 201, 1302–1331 (2004).

    Article  Google Scholar 

  10. Konofaos, N., Evangelou, E. K., Aslanoglou, X., Kokkoris, M. & Vlastou, R. Dielectric properties of CVD grown SiON thin films on Si for MOS microelectronic devices. Semicond. Sci. Technol. 19, 50–53 (2004).

    Article  Google Scholar 

  11. Meijer, E. J. et al. Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838–3840 (2002).

    Article  Google Scholar 

  12. Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  Google Scholar 

  13. Takeya, J., Tsukagoshi, K., Aoyagi, Y., Takenobu, T. & Iwasa, Y. Hall effect of quasi-hole gas in organic single-crystal transistors. Jpn J. Appl. Phys. 44, L1393–L1396 (2005).

    Article  Google Scholar 

  14. Austin, I. G. & Mott, N. F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757–812 (1969).

    Article  Google Scholar 

  15. Emin, D. Semiclassical small-polaron hopping in a generalized molecular-crystal model. Phys. Rev. B 43, 11720–11724 (1991).

    Article  Google Scholar 

  16. Emin, D. Formation and hopping motion of molecular polarons. Phys. Rev. B 61, 14543–14553 (2000).

    Article  Google Scholar 

  17. Mori, N. & Ando, T. Electron-optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175–6188 (1989).

    Article  Google Scholar 

  18. Bussac, M. N., Picon, J. D. & Zuppiroli, L. The impact of molecular polarization on the electronic properties of molecular semiconductors. Europhys. Lett. 66, 392–398 (2004).

    Article  Google Scholar 

  19. da Silva Filho, D. A., Kim, E.-G. & Brédas, J.-L. Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1076 (2005).

    Article  Google Scholar 

  20. Houili, H., Picon, J. D., Bussac, M. N. & Zuppiroli, L. Polarization effects in the channel of an organic field-effect transistor. J. Appl. Phys. 100, 023702 (2006).

    Article  Google Scholar 

  21. Feynman, R. P., Hellwarth, R. W., Iddings, C. K. & Platzman, P. M. Mobility of slow electrons in a polar crystal. Phys. Rev. 127, 1004–1017 (1962).

    Article  Google Scholar 

  22. Menard, E. et al. High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv. Mater. 16, 2097–2101 (2004).

    Article  Google Scholar 

  23. Podzorov, V., Sysoev, S. E., Loginova, E., Pudalov, V. M. & Gershenson, M. E. Single-crystal organic field effect transistors with the hole mobility 8 cm2/Vs. Appl. Phys. Lett. 83, 3504–3506 (2003).

    Article  Google Scholar 

  24. Podzorov, V., Pudalov, V. M. & Gershenson, M. E. Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 82, 1739–1741 (2003).

    Article  Google Scholar 

  25. de Boer, R. W. I., Klapwijk, T. M. & Morpurgo, A. F. Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 84, 4345–4347 (2004).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge V. Podzorov for discussions and for letting us use his temperature-dependent measurements on FETs with a parylene gate dielectric. We thank R. W. I. de Boer and A. F. Stassen for contributing to the initial part of this work. Useful discussions with J. van den Brink are also acknowledged. This work was supported by FOM and by NWO through the Vernieuwingsimpuls 2000 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and theoretical methods (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulea, I., Fratini, S., Xie, H. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nature Mater 5, 982–986 (2006). https://doi.org/10.1038/nmat1774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing