Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-torque oscillator using a perpendicular polarizer and a planar free layer

Abstract

Spintronics materials have recently been considered for radio-frequency devices such as oscillators by exploiting the transfer of spin angular momentum between a spin-polarized electrical current and the magnetic nanostructure it passes through. While previous spin-transfer oscillators (STOs) were based on in-plane magnetized structures, here we present the realization of an STO that contains a perpendicular spin current polarizer combined with an in-plane magnetized free layer. This device is characterized by high-frequency oscillations of the free-layer magnetization, consistent with out-of-plane steady-state precessions induced at the threshold current by a spin-transfer torque from perpendicularly polarized electrons. The results are summarized in static and dynamic current–field state diagrams and will be of importance for the design of STOs with enhanced output signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magneto-resistive cell and magneto-resistance.
Figure 2: Macrospin simulations.
Figure 3: Magneto-resistive transfer curve.
Figure 4: Hysteresis loops and static state diagram.
Figure 5: Dynamic spectra and dynamic state diagram.
Figure 6: Dynamic resistance variation.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  2. Slonczewski, J. C. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999).

    Article  CAS  Google Scholar 

  3. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  4. Li, Z. & Zhang, S. Magnetization dynamics with a spin-transfer torque. Phys. Rev. B 68, 24404–24413 (2003).

    Article  Google Scholar 

  5. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  6. Kiselev, S. I. et al. Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane. Phys. Rev. Lett. 93, 36601–36604 (2004).

    Article  CAS  Google Scholar 

  7. Kiselev, S. I. et al. Spin-transfer excitations of permalloy nanopillars for large applied currents. Phys. Rev. B 72, 64430–64439 (2005).

    Article  Google Scholar 

  8. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 27201–27204 (2004).

    Article  CAS  Google Scholar 

  9. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406–100409 (2004).

    Article  Google Scholar 

  10. Krivorotov, I. N. et al. Time domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  CAS  Google Scholar 

  11. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  CAS  Google Scholar 

  12. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  CAS  Google Scholar 

  13. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Injection locking and phase control of spin transfer oscillators. Phys. Rev. Lett. 95, 67203–67206 (2005).

    Article  CAS  Google Scholar 

  14. Pufall, M. R., Rippard, W. H., Russek, S. E., Kaka, S. & Katine, J. A. Electrical measurements of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 87206–87209 (2006).

    Article  CAS  Google Scholar 

  15. Mistral, Q. et al. Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars. Appl. Phys. Lett. 88, 192507–192509 (2006).

    Article  Google Scholar 

  16. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    Article  CAS  Google Scholar 

  17. Moodera, J. S. & Mathon, G. Spin polarized tunneling in ferromagnetic junctions. J. Magn. Magn. Mater. 200, 248–273 (1999).

    Article  CAS  Google Scholar 

  18. Slonczewski, J. C. Electronic device using magnetic components. US patent 5,695,864 (1997).

  19. Apalkov, D. M. & Visscher, P. B. Spin-torque switching: Fokker–Planck rate calculation. Phys. Rev. B 72, 180405–180408 (2005).

    Article  Google Scholar 

  20. Slavin, A. N. & Tiberkevich, V. S. Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts. Phys. Rev. B 72, 92407–92410 (2005).

    Article  Google Scholar 

  21. Slavin, A. N. & Tiberkevich, V. S. Spinwave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201–237204 (2005).

    Article  Google Scholar 

  22. Slavin, A. N. & Tiberkevich, V. S. Theory of mutual phaselocking of spin torque nano-oscillators preprint. Phys. Rev. B 74, 10440–10443 (2006).

    Article  Google Scholar 

  23. Slavin, A. N. & Tiberkevich, V. S. Current-induced bistability and dynamic range of microwave generation in magnetic nanostructures. Phys. Rev. B 72, 94428–94432 (2005).

    Article  Google Scholar 

  24. Stiles, M. D. & Miltat, J. in Spin Dynamics in Confined Magntic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006).

    Google Scholar 

  25. Bertotti, G. et al. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents. Phys. Rev. Lett. 94, 127206–127209 (2005).

    Article  CAS  Google Scholar 

  26. Redon, O., Dieny, B. & Rodmacq, B. Magnetic spin polarization and magnetization rotation device with memory and writing process using such a device. US patent 6,532,164 B2 (2003).

  27. Lee, K. J., Redon, O. & Dieny, B. Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer. Appl. Phys. Lett. 86, 22505–22507 (2005).

    Article  Google Scholar 

  28. Kent, A. D., Özyilmaz, B. & del Barco, E. Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 3897–3899 (2004).

    Article  CAS  Google Scholar 

  29. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater. 5, 210–215 (2006).

    Article  CAS  Google Scholar 

  30. Firastrau, I. et al. State diagram for the spin current induced magnetization dynamics using a perpendicular polarizer and a planar free layer. J. Magn. Magn. Mater. 31, 2029–2031 (2007).

    Article  Google Scholar 

  31. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  CAS  Google Scholar 

  32. Grollier, J. et al. Field dependence of magnetization reversal by spin transfer. Phys. Rev. B 67, 174402–174409 (2003).

    Article  Google Scholar 

  33. Lee, K. J., Deac, A., Redon, O., Nozieres, J. P. & Dieny, B. Excitations of incoherent spin-waves due to spin-transfer torque. Nature Mater. 3, 877–881 (2004).

    Article  CAS  Google Scholar 

  34. Seki, T., Mitani, S., Yakushiji, K. & Takanashi, K. Magnetization reversal by spin-transfer torque in 90 configuration with a perpendicular spin polarizer. Appl. Phys. Lett. 89, 172504–172506 (2006).

    Article  Google Scholar 

  35. Delille, F. et al. Thermal variation of current perpendicular-to-plane giant magnetoresistance in laminated and nonlaminated spin valves. J. Appl. Phys. 100, 13912–13918 (2006).

    Article  Google Scholar 

  36. Deac, A. et al. Current-induced magnetization switching in exchange-biased spin valves for current-perpendicular-to-plane giant magnetoresistance heads. Phys. Rev. B 73, 64414–64421 (2006).

    Article  Google Scholar 

  37. Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

    Article  CAS  Google Scholar 

  38. Braganca, P. M. et al. Reducing the critical current for short-pulse spin-transfer switching of nanomagnets. Appl. Phys. Lett. 87, 112507–112509 (2005).

    Article  Google Scholar 

  39. Boulle, O. et al. Shaped angular dependence of the spin transfer torque and microwave generation without magnetic field. Nature Phys. (in the press).

Download references

Acknowledgements

This work has been supported by the French national programmes ANVAR No A0503013 and ANR/PNANO MagICO No ANR-05-NANO-044, as well as partially by the EC programme DYNAMICS No HPRN-CT-2002-00289. I.F. acknowledges support from the Institut Carnot funding of CEA/LETI. We thank A. Slavin, V. Tiberkevich and C. Baraduc for stimulating discussions, A. Manchon for simulations on the spin polarization and S. Petit for assistance with transport measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Ebels or B. Delaët.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houssameddine, D., Ebels, U., Delaët, B. et al. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nature Mater 6, 447–453 (2007). https://doi.org/10.1038/nmat1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing