Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic pores with reactive signal amplifiers as artificial tongues

Abstract

The sensation of taste is mediated by activation or deactivation of transmembrane pores1,2. Artificial stimulus-responsive pores are enormously appealing as sensor components because changes in their activity are readily detectable in many different ways3,4,5,6,7,8,9. However, the detection of multiple components in complex matrices (such as foods) with one pore sensor has so far remained elusive because the specificity necessary for sensing a target compound in complex mixtures is incompatible with the broad applicability needed for the detection of multiple components7. Here, we present synthetic pores that, like our tongues, can sense flavours in food and in addition make them visibly detectable. Differential sensing and pattern recognition are solutions based on empirical and biomimetic approaches. They have been explored with synthetic receptor arrays10,11,12,13,14,15 and electronic tongues16. In contrast, our approach is non-empirical as it exploits reactive amplifiers that covalently capture elusive analytes after enzymatic signal generation17,18,19,20,21,22 and drag them into synthetic pores for blockage. Reactive amplification proved to be highly sensitive and adaptable to various analytes and pores. Moreover, it can be combined with reactive filtration for minimizing interference. The system was tested on real food samples for detection of sucrose, lactose, lactate, acetate, citrate and glutamate to demonstrate the feasibility of these synthetic pores as universal sensors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecules used in this study and model of an active pore–amplifier–analyte complex.
Figure 2: Multicomponent sensing in complex matrices with synthetic pores.
Figure 3: Reactive signal amplification.
Figure 4: General signal amplification.
Figure 5: Selective signal amplification.

Similar content being viewed by others

References

  1. Chandrashekar, J., Hoon, M. A., Ryba, N. J. & Zuker, C. S. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006).

    Article  CAS  Google Scholar 

  2. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  Google Scholar 

  3. Cornell, R. A. et al. A biosensor that uses ion channel switches. Nature 387, 580–583 (1997).

    Article  CAS  Google Scholar 

  4. Terrettaz, S., Ulrich, W. P., Guerrini, R., Verdini, A. & Vogel, H. Immunosensing by a synthetic ligand-gated ion channel. Angew. Chem. Int. Edn 41, 1740–1743 (2001).

    Article  Google Scholar 

  5. Gu, L.-Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  Google Scholar 

  6. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    Article  CAS  Google Scholar 

  7. Kasianowicz, J. J., Henrickson, S. E., Weetall, H. H. & Robertson, B. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 73, 2268–2272 (2001).

    Article  CAS  Google Scholar 

  8. Choi, Y., Baker, L. A., Hillebrenner, H. & Martin, C. R. Biosensing with conically shaped nanopores and nanotubes. Phys. Chem. Chem. Phys. 8, 4976–4988 (2006).

    Article  CAS  Google Scholar 

  9. Das, G., Talukdar, P. & Matile, S. Fluorometric detection of enzyme activity with synthetic supramolecular pores. Science 298, 1600–1602 (2002).

    Article  CAS  Google Scholar 

  10. Tanaka, H. et al. Synthetic pores with sticky π-clamps. Org. Biomol. Chem. 5, 1369–1380 (2007).

    Article  CAS  Google Scholar 

  11. Lavigne, J. J. & Anslyn, E. V. Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors. Angew. Chem. Int. Edn 40, 3118–3130 (2001).

    Article  CAS  Google Scholar 

  12. Wright, A. T. & Anslyn, E. V. Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 35, 14–28 (2006).

    Article  CAS  Google Scholar 

  13. Zhang, C. & Suslick, K. S. Colorimetric sensor array for soft drink analysis. J. Agric. Food Chem. 55, 237–242 (2007).

    Article  CAS  Google Scholar 

  14. Rissin, D. M. & Walt, D. R. Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J. Am. Chem. Soc. 128, 6286–6287 (2006).

    Article  CAS  Google Scholar 

  15. Buryak, A. & Severin, K. A chemosensor array for the colorimetric identification of 20 natural amino acids. J. Am. Chem. Soc. 127, 3700–3701 (2005).

    Article  CAS  Google Scholar 

  16. Toko, K. Electronic tongue. Biosens. Bioelectron. 13, 701–709 (1998).

    Article  CAS  Google Scholar 

  17. Sanz Alaejos, M. & García Montelongo, F. J. Application of amperometric biosensors to the determination of vitamins and α-amino acids. Chem. Rev. 104, 3239–3265 (2004).

    Article  Google Scholar 

  18. Tamaru, S., Kiyonaka, S. & Hamachi, I. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel. Chem. Eur. J. 11, 7294–7304 (2005).

    Article  CAS  Google Scholar 

  19. Guarise, C., Pasquato, L., De Filippis, V. & Scrimin, P. Gold nanoparticles-based protease assay. Proc. Natl Acad. Sci. USA 103, 3978–3982 (2006).

    Article  CAS  Google Scholar 

  20. Marquette, C. A., Degiuli, A. & Blum, L. J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosens. Bioelectron. 19, 433–439 (2004).

    Article  Google Scholar 

  21. Campanella, L., Bonanni, A., Finotti, E. & Tomassetti, M. Biosensors for determination of total and natural antioxidant capacity of red and white wines: Comparison with other spectrophotometric and fluorimetric methods. Biosens. Bioelectron. 19, 641–651 (2004).

    Article  CAS  Google Scholar 

  22. Litvinchuk, S., Sordé, N. & Matile, S. Sugar sensing with synthetic multifunctional pores. J. Am. Chem. Soc. 127, 9316–9317 (2005).

    Article  CAS  Google Scholar 

  23. Sakai, N., Mareda, J. & Matile, S. Rigid-rod molecules in biomembrane models: From hydrogen-bonded chains to synthetic multifunctional pores. Acc. Chem. Res 38, 79–87 (2005).

    Article  CAS  Google Scholar 

  24. Bardelmeijer, H. A. et al. Pre-, on- and post-column derivatization in capillary electrophoresis. Electrophoresis 18, 2214–2227 (1997).

    Article  CAS  Google Scholar 

  25. Som, A. & Matile, S. Rigid-rod β-barrels with internal “Cascade Blue” cofactors—catalysis of amide, carbonate and ester hydrolysis. Eur. J. Org. Chem. 3874–3883 (2002).

  26. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  Google Scholar 

  27. Levrand, B., Ruff, Y., Lehn, J.-M. & Herrmann, A. Controlled release of volatile aldehydes and ketones by reversible hydrazone formation—“classical” profragances are getting dynamic. Chem. Commun. 41, 2965–2967 (2006).

    Article  Google Scholar 

  28. Yamaguchi, S. & Ninomiya, K. Umami and food palatability. J. Nutr. 130, 921S–926S (2000).

    Article  CAS  Google Scholar 

  29. Tanaka, H. et al. Adhesive π-clamping within synthetic multifunctional pores. J. Am. Chem. Soc. 128, 16000–16001 (2006).

    Article  CAS  Google Scholar 

  30. Tanaka, H. et al. Synthetic pores with sticky π-clamps. Org. Biomol. Chem. 5,doi:10.1039/b701082f (2007).

  31. Chen, C.-W. & Whitlock, H. W. Jr. Molecular tweezers: A simple model of bifunctional intercalation. J. Am. Chem. Soc. 100, 4921–4922 (1978).

    Article  CAS  Google Scholar 

  32. Zimmerman, S. C. & VanZyl, C. M. Rigid molecular tweezers: Synthesis, characterization, and complexation chemistry of a diacridine. J. Am. Chem. Soc. 109, 7894–7896 (1987).

    Article  CAS  Google Scholar 

  33. Klärner, F. G. & Kahlert, B. Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes. Acc. Chem. Res. 36, 919–932 (2003).

    Article  Google Scholar 

  34. Butterfield, S. M. & Waters, M. L. A designed β-hairpin peptide for molecular recognition of ATP in water. J. Am. Chem. Soc. 125, 9580–9581 (2003).

    Article  CAS  Google Scholar 

  35. Lokey, R. S. & Iverson, B. L. Synthetic molecules that fold into pleated secondary structure in solution. Nature 375, 303–305 (1995).

    Article  CAS  Google Scholar 

  36. Miyatake, T., Nishihara, M. & Matile, S. A cost-effective method for the optical transduction of chemical reactions. Application to hyaluronidase inhibitor screening with polyarginine–counteranion complexes in lipid bilayers. J. Am. Chem. Soc. 128, 12420–12421 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.-H. Tran for contributions to pore synthesis, D. Jeannerat, A. Pinto and S. Grass for nuclear magnetic resonance spectroscopy measurements, P. Perrottet and the group of F. Gülaçar for mass spectrometry measurements, N. Sakai for advice, CSCS in Manno for CPU time on their CRAY-XT3 computer, two referees for very helpful comments and the Swiss NSF (S.M.) and JSPS (T.M., T.T.) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Matile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, figures, schemes and tables (PDF 2931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinchuk, S., Tanaka, H., Miyatake, T. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nature Mater 6, 576–580 (2007). https://doi.org/10.1038/nmat1933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing