Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elastic membranes of close-packed nanoparticle arrays

Abstract

Nanoparticle superlattices are hybrid materials composed of close-packed inorganic particles separated by short organic spacers. Most work so far has concentrated on the unique electronic, optical and magnetic behaviour of these systems1,2,3,4,5. Here, we demonstrate that they also possess remarkable mechanical properties. We focus on two-dimensional arrays of close-packed nanoparticles6,7 and show that they can be stretched across micrometre-size holes. The resulting free-standing monolayer membranes extend over hundreds of particle diameters without crosslinking of the ligands or further embedding in polymer. To characterize the membranes we measured elastic properties with force microscopy and determined the array structure using transmission electron microscopy. For dodecanethiol-ligated 6-nm-diameter gold nanocrystal monolayers, we find a Young’s modulus of the order of several GPa. This remarkable strength is coupled with high flexibility, enabling the membranes to bend easily while draping over edges. The arrays remain intact and able to withstand tensile stresses up to temperatures around 370 K. The purely elastic response of these ultrathin membranes, coupled with exceptional robustness and resilience at high temperatures should make them excellent candidates for a wide range of sensor applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled ultrathin nanoparticle membranes.
Figure 2: Indentation response.
Figure 3: Membrane resilience at elevated temperatures.

Similar content being viewed by others

References

  1. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum-dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  2. Pileni, M. P. Nanosized particles made in colloidal assemblies. Langmuir 13, 3266–3276 (1997).

    Article  CAS  Google Scholar 

  3. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115–2117 (2001).

    Article  CAS  Google Scholar 

  4. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  5. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures of diblock copolymer scaffolds. Nature 414, 735–738 (2001).

    Article  CAS  Google Scholar 

  6. Lin, Y. et al. Ultrathin cross-linked nanoparticle membranes. J. Am. Chem. Soc. 125, 12690–12691 (2003).

    Article  CAS  Google Scholar 

  7. Bigioni, T. P. et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Mater. 5, 265–270 (2006).

    Article  CAS  Google Scholar 

  8. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  9. Liff, S. M., Kumar, N. & McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Mater. 6, 76–83 (2007).

    Article  CAS  Google Scholar 

  10. Jiang, C., Markutsya, S., Pikus, Y. & Tsukruk, V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–728 (2004).

    Article  CAS  Google Scholar 

  11. Markutsya, S., Jiang, C., Pikus, Y. & Tsukruk, V. V. Freely suspended layer-by-layer nanomembranes: Testing micromechanical properties. Adv. Funct. Mater. 15, 771–780 (2005).

    Article  CAS  Google Scholar 

  12. Vendamme, R., Onoue, S.-Y., Nakao, A. & Kunitake, T. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nature Mater. 5, 494–501 (2006).

    Article  CAS  Google Scholar 

  13. Lee, D. et al. Viscoplastic and granular behavior in films of colloidal nanocrystals. Phys. Rev. Lett. 98, 026103 (2007).

    Article  Google Scholar 

  14. Klajn, R. et al. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 316, 261–264 (2007).

    Article  CAS  Google Scholar 

  15. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  16. Wan, K.-T., Guo, S. & Dillard, D. A. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425, 150–162 (2003).

    Article  CAS  Google Scholar 

  17. Komaragiri, U., Begley, M. R. & Simmonds, J. G. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 72, 203–212 (2005).

    Article  Google Scholar 

  18. Begley, M. R. & Mackin, T. J. Spherical indentation of freestanding circular thin films in the membrane regime. J. Mech. Phys. Solids 52, 2005–2023 (2004).

    Article  CAS  Google Scholar 

  19. Banerjee, S. et al. Raman microprobe analysis of elastic strain and fracture in electrophoretically deposited CdSe nanocrystal films. Nano Lett. 6, 175–180 (2006).

    Article  CAS  Google Scholar 

  20. Landman, U. & Luedtke, W. D. Small is different: Energetic, structural, thermal and mechanical properties of passivated nanocluster assemblies. Faraday Discuss. 125, 1–22 (2004).

    Article  CAS  Google Scholar 

  21. Hamaker, H. C. The London–van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937).

    Article  CAS  Google Scholar 

  22. Kerner, E. H. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. London B 69, 808–813 (1956).

    Article  Google Scholar 

  23. Collard, S. M. & McLellan, R. B. High-temperature elastic constants of gold single-crystals. Acta Metall. Mater. 39, 3143–3151 (1991).

    Article  CAS  Google Scholar 

  24. Mark, J. E. Polymer Data Handbook (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  25. Luedtke, W. D. & Landman, U. Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies. J. Phys. Chem. 100, 13323–13329 (1996).

    Article  CAS  Google Scholar 

  26. Parthasarathy, R., Lin, X.-M. & Jaeger, H. M. Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior. Phys. Rev. Lett. 87, 186807 (2001).

    Article  Google Scholar 

  27. Morkved, T. L., Lopes, W. A., Hahm, J., Sibener, S. J. & Jaeger, H. M. Silicon nitride membrane substrates for the investigation of local structure in polymer thin films. Polymer 39, 3871–3875 (1998).

    Article  CAS  Google Scholar 

  28. Lin, X.-M., Sorensen, C. M. & Klabunde, K. J. Digestive ripening, nanophase segregation and superlattice formation in gold nanocrystal colloids. J. Nanopart. Res. 2, 157–164 (2000).

    Article  CAS  Google Scholar 

  29. Eah, S.-K. 2006 Materials Research Society Fall Meeting Abstracts 401 (Materials Research Society, Warrendale, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank W. D. Luedtke, S. Nagel, T. Witten, W. Lopes, T. Tran and L. Adams for helpful discussions, Q. Guo and X. Liao for technical assistance and S.-K. Eah for sharing the water-depositing technique. This work was supported by the UC-ANL Consortium for Nanoscience Research and by the NSF MRSEC program under DMR 0213745. R.H.G. was supported by the MRSEC REU program during his stay at the University of Chicago. X.-M.L. acknowledges support from the US DOE, BES-Materials Sciences, under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich M. Jaeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S4 (PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueggenburg, K., Lin, XM., Goldsmith, R. et al. Elastic membranes of close-packed nanoparticle arrays. Nature Mater 6, 656–660 (2007). https://doi.org/10.1038/nmat1965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing