Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid-crystal materials find a new order in biomedical applications

Abstract

With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrically tunable liquid-crystal filter configurations.
Figure 2: Tunable liquid-crystal films can be used as simple spectrometers in biomedical applications.
Figure 3: Hyperspectral imaging allows the generation of a complete wavelength spectrum at each pixel of an image.

© 2007 OSA

Figure 4: Liquid-crystal biosensors.
Figure 5: Liquid-crystal lenses.

© 2006 OSA

Figure 6: Patterned liquid-crystal-polymer based actuators can undergo radical shape deformations.

© 2005 RSC

Similar content being viewed by others

References

  1. Stewart, G. T. Liquid crystals in biology. I. Historical, biological and medical aspects. Liquid Cryst. 30, 541–557 (2003).

    CAS  Google Scholar 

  2. Stewart, G. T. Liquid crystals in biology. II. Origins and processes of life. Liquid Cryst. 31, 443–471 (2004).

    CAS  Google Scholar 

  3. Reinitzer, F. Beiträge zur Kenntniss des Cholesterins. Monatshefte Chemie/Chem. Mon. 9, 421–441 (1888).

    Google Scholar 

  4. Lehmann, O. Flüssige Kristalle (Engelmann, Leipzig, 1904).

  5. Ren, H. W., Fan, Y. H., Gauza, S. & Wu, S. T. Tunable microlens arrays using polymer network liquid crystal. Opt. Commun. 230, 267–271 (2004).

    CAS  Google Scholar 

  6. Liu, Y. J., Sun, X. W., Shum, P. & Yin, X. J. Tunable fly's-eye lens made of patterned polymer-dispersed liquid crystal. Opt. Express 14, 5634–5640 (2006).

    CAS  Google Scholar 

  7. Nageotte, J. Morphologie des Gels Lipoides (Hermann, Paris, 1936).

    Google Scholar 

  8. Needham, J. Biochemistry and Morphogenesis (Cambridge Univ. Press, 1942).

    Google Scholar 

  9. Lyot, B. Optical apparatus with wide field using interference of polarized light. C. R. Acad. Sci., Paris 197, 1593 (1933).

    Google Scholar 

  10. Morris, H. R., Hoyt, C. C., Miller, P. & Treado, P. J. Liquid crystal tunable filter Raman chemical imaging. Appl. Spectrosc. 50, 805–811 (1996).

    CAS  Google Scholar 

  11. Colarusso, P., Whitley, A., Levin, I. W. & Lewis, E. N. Raman microscopy and imaging of inorganic and biological materials with liquid crystal tunable filters. Proc. SPIE 3608, 139–145 (1999).

    CAS  Google Scholar 

  12. Zuzak, K. J., Schaeberle, M. D., Lewis, E. N. & Levin, I. W. Visible spectroscopic imaging studies of normal and ischemic dermal tissue. Proc. SPIE 3918, 17–26 (2000).

    CAS  Google Scholar 

  13. Staromlynska, J., Rees, S. M. & Gillyon, M. P. High-performance tunable filter. Appl. Opt. 37, 1081–1088 (1998).

    CAS  Google Scholar 

  14. Saito, Y., Matsubara, T., Koga, T., Kobayashi, F., Kawahara, T. D. & Nomura, A. Laser-induced fluorescence imaging of plants using a liquid crystal tunable filter and charge coupled device imaging camera. Rev. Scient. Instrum. 76, 106103 (2005).

    Google Scholar 

  15. Chen, C. Y., Pan, C. L., Hsieh, C. F., Lin, Y. F. & Pan, R. P. Liquid-crystal-based terahertz tunable Lyot filter. Appl. Phys. Lett. 88, 101107 (2006).

    Google Scholar 

  16. Bunning, T. J., Natarajan, L. V., Tondiglia, V. P. & Sutherland, R. L. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 30, 83–115 (2000).

    CAS  Google Scholar 

  17. Qi, J., Li, L., De Sarkar, M. & Crawford, G. P. Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals. J. Appl. Phys. 96, 2443–2450 (2004).

    CAS  Google Scholar 

  18. Bowley, C. C., Kossyrev, P. A., Crawford, G. P. & Faris, S. Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals. Appl. Phys. Lett. 79, 9–11 (2001).

    CAS  Google Scholar 

  19. Escuti, M. J., Qi, J. & Crawford, G. P. Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals. Opt. Lett. 28, 522–524 (2003).

    CAS  Google Scholar 

  20. Gorkhali, S. P., Qi, J. & Crawford, G. P. Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries. J. Opt. Soc. Am. B 23, 149–158 (2006).

    CAS  Google Scholar 

  21. McMurdy, J. W., Jay, G. D. & Crawford, G. P. Monolithic microspectrometer using tunable ferroelectric liquid crystals. Appl. Phys. Lett. 89, 081105 (2006).

    Google Scholar 

  22. McMurdy, J. W., Jay, G. D., Suner, S. & Crawford, G. P. Anemia detection utilizing diffuse reflectance of the palpebral conjunctiva and tunable liquid crystal filter technology. Proc. SPIE 6177, 1–10 (2006).

    Google Scholar 

  23. Barnik, M. I. & Palto, S. P. Dynamic properties of in-plane switching of ferroelectric liquid crystals. Ferroelectrics 310, 155–167 (2004).

    Google Scholar 

  24. Kim, H. R. et al. A rotatable waveplate using a vertically aligned deformed-helix ferroelectric liquid crystal. Ferroelectrics 312, 479–484 (2004).

    Google Scholar 

  25. Boer, G., Ruffieux, P., Scharf, T., Seitz, P. & Dandliker, R. Compact liquid-crystal-polymer Fourier-transform spectrometer. Appl. Opt. 43, 2201–2208 (2004).

    Google Scholar 

  26. Boer, G., Scharf, T. & Dandliker, R. Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology. Appl. Opt. 41, 1400–1407 (2002).

    Google Scholar 

  27. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2006).

    Google Scholar 

  28. Morris, H. R., Hoyt, C. C. & Treado, P. J. imaging spectrometers for fluorescence and Raman microscopy — acousto-optic and liquid-crystal tunable filters. Appl. Spectrosc. 48, 857–866 (1994).

    CAS  Google Scholar 

  29. Vo-Dinh, T. et al. A hyperspectral imaging system for in vivo optical diagnosis. Eng. Med. Biol. Mag. 23, 40–49 (2004).

    Google Scholar 

  30. Rosario, P.-I. et al. Design and comparison of multi- and hyper- spectral imaging systems. Proc. SPIE 5987, 59870 (2005).

    Google Scholar 

  31. Gebhart, S. C., Thompson, R. C. & Mahadevan-Jansen, A. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation. Appl. Opt. 46, 1896–1910 (2007).

    Google Scholar 

  32. Sorg, B. S., Moeller, B. J., Donovan, O., Cao, Y. T. & Dewhirst, M. W. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J. Biomed. Opt. 10, 044004 (2005).

    Google Scholar 

  33. Zuzak, K. J., Schaeberle, M. D., Lewis, E. N. & Levin, I. W. Visible reflectance hyperspectral imaging: Characterization of a noninvasive, in vivo system for determining tissue perfusion. Anal. Chem. 74, 2021–2028 (2002).

    CAS  Google Scholar 

  34. Martin, M. E., Wabuyele, M. B., Panjehpour, M., Phan, M. N., Overholt, B. F. & Vo-Dinh, T. Hyperspectral fluorescence imaging system for biomedical diagnostics. Proc. SPIE 6080, 60800 (2006).

    Google Scholar 

  35. Ng, A. Y. M., See, C. W. & Somekh, M. G. Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator. J. Microsc. Oxford 214, 334–340 (2004).

    CAS  Google Scholar 

  36. Wolfling, S., Lanzmann, E., Ben-Yosef, N. & Arieli, Y. Wavefront reconstruction by spatial-phase-shift imaging interferometry. Appl. Opt. 45, 2586–2596 (2006).

    Google Scholar 

  37. Smith, P. J., Taylor, C. M., Shaw, A. J. & McCabe, E. M. Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator. Appl. Opt. 39, 2664–2669 (2000).

    CAS  Google Scholar 

  38. Capeluto, M. G., La Mela, C., Iemmi, C. & Marconi, M. C. Scanning mechanism based on a programmable liquid crystal display. Opt. Commun. 232, 107–113 (2004).

    CAS  Google Scholar 

  39. Cojoc, D., Cabrini, S., Ferrari, E., Malureanu, R., Danailov, M. B. & Di Fabrizio, E. Dynamic multiple optical trapping by means of diffractive optical elements. Microelectron. Eng. 73–74, 927–932 (2004).

    Google Scholar 

  40. Bergamini, S., Darquie, B., Jones, M., Jacubowiez, L., Browaeys, A. & Grangier, P. Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889–1894 (2004).

    CAS  Google Scholar 

  41. Dufresne, E. R. & Grier, D. G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Scient. Instrum. 69, 1974–1977 (1998).

    CAS  Google Scholar 

  42. Smalyukh, I. I., Kuzmin, A. N., Kachynski, A. V., Prasad, P. N. & Lavrentovich, O. D. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal. Appl. Phys. Lett. 86, 021913 (2005).

    Google Scholar 

  43. Smalyukh, I. I. et al. Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension. Mol. Cryst. Liq. Cryst. 450, 279–295 (2006).

    Google Scholar 

  44. Kopp, V. I., Zhang, Z. Q. & Genack, A. Z. Lasing in chiral photonic structures. Prog. Quant. Electron. 27, 369–416 (2003).

    CAS  Google Scholar 

  45. Jakubiak, R. et al. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals. Appl. Phys. Lett. 85, 6095–6097 (2004).

    CAS  Google Scholar 

  46. Ford, A. D., Morris, S. M. & Coles, H. J. Photonics and lasing in liquid crystals. Mater. Today 9, 36–42 (2006).

    CAS  Google Scholar 

  47. Moreira, M. F. et al. Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor. Appl. Phys. Lett. 85, 2691–2693 (2004).

    CAS  Google Scholar 

  48. Lin, T. H. et al. Cholesteric liquid crystal laser with wide tuning capability. Appl. Phys. Lett. 86, 161120 (2005).

    Google Scholar 

  49. Morris, S. M. et al. The emission characteristics of liquid-crystal lasers. J. Soc. Information Display 14, 565–573 (2006).

    CAS  Google Scholar 

  50. Prasad, P. N. Emerging opportunities at the interface of photonics, nanotechnology and biotechnology. Mol. Cryst. Liq. Cryst. 446, 1–10 (2006).

    CAS  Google Scholar 

  51. Kim, E. B., Guzman, O., Grollau, S., Abbott, N. L. & de Pablo, J. J. Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study. J. Chem. Phys. 121, 1949–1961 (2004).

    CAS  Google Scholar 

  52. Slavinec, M., Crawford, G. D., Kralj, S. & Zumer, S. Determination of the nematic alignment and anchoring strength at the curved nematic–air interface. J. Appl. Phys. 81, 2153–2156 (1997).

    CAS  Google Scholar 

  53. Brake, J. M. & Abbott, N. L. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous–liquid crystal interfaces. Langmuir 18, 6101–6109 (2002).

    CAS  Google Scholar 

  54. Brake, J. M., Daschner, M. K., Luk, Y. Y. & Abbott, N. L. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302, 2094–2097 (2003).

    CAS  Google Scholar 

  55. Kim, E. B. et al. Interactions of liquid crystal-forming molecules with phospholipid bilayers studied by molecular dynamics simulations. Biophys. J. 89, 3141–3158 (2005).

    CAS  Google Scholar 

  56. Brake, J. M., Mezera, A. D. & Abbott, N. L. Effect of surfactant structure on the orientation of liquid crystals at aqueous–liquid crystal interfaces. Langmuir 19, 6436–6442 (2003).

    CAS  Google Scholar 

  57. Lockwood, N. A., de Pablo, J. J. & Abbott, N. L. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces. Langmuir 21, 6805–6814 (2005).

    CAS  Google Scholar 

  58. Luk, Y. Y., Tingey, M. L., Dickson, K. A., Raines, R. T. & Abbott, N. L. Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals. J. Am. Chem. Soc. 126, 9024–9032 (2004).

    CAS  Google Scholar 

  59. Tingey, M. L., Wilyana, S., Snodgrass, E. J. & Abbott, N. L. Imaging of affinity microcontact printed proteins by using liquid crystals. Langmuir 20, 6818–6826 (2004).

    CAS  Google Scholar 

  60. Clare, B. H. & Abbott, N. L. Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events. Langmuir 21, 6451–6461 (2005).

    CAS  Google Scholar 

  61. Hoogboom, J., Velonia, K., Rasing, T., Rowan, A. E. & Nolte, R. J. M. LCD-based detection of enzymatic action. Chem. Commun. 4, 434–435 (2006).

    Google Scholar 

  62. Helfinstine, S. L., Lavrentovich, O. D. & Woolverton, C. J. Lyotropic liquid crystal as a real-time detector of microbial immune complexes. Lett. Appl. Microbiol. 43, 27–32 (2006).

    CAS  Google Scholar 

  63. Jang, C. H., Cheng, L. L., Olsen, C. W. & Abbott, N. L. Anchoring of nematic liquid crystals on viruses with different envelope structures. Nano Lett. 6, 1053–1058 (2006).

    CAS  Google Scholar 

  64. McCamley, M. K., Artenstein, A. W., Opal, S. M. & Crawford, G. P. Optical detection of sepsis markers using liquid crystal based biosensors. Proc. SPIE 6441, 64111Y (2007).

    Google Scholar 

  65. Luk, Y. Y., Campbell, S. F., Abbott, N. L. & Murphy, C. J. Non-toxic thermotropic liquid crystals for use with mammalian cells. Liq. Cryst. 31, 611–621 (2004).

    CAS  Google Scholar 

  66. Woolverton, C. J., Gustely, E., Li, L. & Lavrentovich, O. D. Liquid crystal effects on bacterial viability. Liq. Cryst. 32, 417–423 (2005).

    CAS  Google Scholar 

  67. Lockwood, N. A. et al. Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells. Adv. Funct. Mater. 16, 618–624 (2006).

    CAS  Google Scholar 

  68. Hoogboom, J. et al. Novel alignment technique for LCD-biosensors. Chem. Commun. 23, 2856–2857 (2003).

    Google Scholar 

  69. Kim, S. R., Shah, R. R. & Abbott, N. L. Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals. Anal. Chem. 72, 4646–4653 (2000).

    CAS  Google Scholar 

  70. Araki, T. & Tanaka, H. Surface-sensitive particle selection by driving particles in a nematic solvent. J. Phys. Condens. Matter 18, L193–L203 (2006).

    CAS  Google Scholar 

  71. Fang, J. Y., Ma, W., Selinger, J. V. & Shashidhar, R. Imaging biological cells using liquid crystals. Langmuir 19, 2865–2869 (2003).

    CAS  Google Scholar 

  72. Sanchez, C., Arribart, H. & Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater. 4, 277–288 (2005).

    CAS  Google Scholar 

  73. De Silva, L. et al. Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings. Electromagnetics 25, 391–408 (2005).

    Google Scholar 

  74. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    CAS  Google Scholar 

  75. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS  Google Scholar 

  76. Parker, A. R. & Martini, N. Structural colour in animals — simple to complex optics. Opt. Laser Technol. 38, 315–322 (2006).

    Google Scholar 

  77. Escuti, M. J., Qi, J. & Crawford, G. P. Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology. Appl. Phys. Lett. 83, 1331–1333 (2003).

    CAS  Google Scholar 

  78. Xianyu, H., Faris, S. & Crawford, G. In-plane switching of cholesteric liquid crystals for visible and near-infrared applications. Appl. Opt. 43, 5006–5015 (2004).

    CAS  Google Scholar 

  79. Huang, C. Y., Fu, K. Y., Lo, K. Y. & Tsai, M. S. Bistable transflective cholesteric light shutters. Opt. Express 11, 560–565 (2003).

    CAS  Google Scholar 

  80. Mitov, M. & Dessaud, N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Mater. 5, 361–364 (2006).

    CAS  Google Scholar 

  81. Zuccarello, G., Scribner, D., Sands, R. & Buckley, L. J. Materials for bio-inspired optics. Adv. Mater. 14, 1261–1264 (2002).

    CAS  Google Scholar 

  82. Aizenberg, J. & Hendler, G. Designing efficient microlens arrays: lessons from Nature. J. Mater. Chem. 14, 2066–2072 (2004).

    CAS  Google Scholar 

  83. Cheng, C. C., Chang, C. A. & Yeh, J. A. Variable focus dielectric liquid droplet lens. Opt. Express 14, 4101–4106 (2006).

    Google Scholar 

  84. Wang, B., Ye, M. O. & Sato, S. Liquid crystal lens with focal length variable from negative to positive values. IEEE Photon. Technol. Lett. 18, 79–81 (2006).

    Google Scholar 

  85. Liu, Y. J., Sun, X. W. & Wang, Q. A focus-switchable lens made of polymer-liquid crystal composite. J. Cryst. Growth 288, 192–194 (2006).

    CAS  Google Scholar 

  86. Ren, H. W., Fan, Y. H. & Wu, S. T. Liquid-crystal microlens arrays using patterned polymer networks. Opt. Lett. 29, 1608–1610 (2004).

    Google Scholar 

  87. Fan, Y. H., Ren, H. W. & Wu, S. T. Switchable Fresnel lens using polymer-stabilized liquid crystals. Opt. Express 11, 3080–3086 (2003).

    Google Scholar 

  88. Li, G. et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. Proc. Natl Acad Sci.USA 103, 6100–6104 (2006).

    CAS  Google Scholar 

  89. Amigo-Melchior, A. & Finkelmann, H. A concept for bifocal contact- or intraocular lenses: liquid single crystal hydrogels (“LSCH''). Polym. Adv. Technol. 13, 363–369 (2002).

    CAS  Google Scholar 

  90. Broer, D. J. in Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (eds Crawford, G. P. and Zumer, S.) 239–254 (Taylor & Francis, London, 1996).

    Google Scholar 

  91. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers. (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  92. Yu, Y. & Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem. Int. Edn 45, 5416–5418 (2006).

    CAS  Google Scholar 

  93. Xie, P. & Zhang, R. B. Liquid crystal elastomers, networks and gels: advanced smart materials. J. Mater. Chem. 15, 2529–2550 (2005).

    CAS  Google Scholar 

  94. de Gennes, P. G. A semi-fast artificial muscle. C. R. Acad. Sci. Series IIB 324, 343–348 (1997).

    CAS  Google Scholar 

  95. Wang, X., Engel, J. & Liu, C. Liquid crystal polymer (LCP) for MEMS: processes and applications. J. Micromech. Microeng. 13, 628–633 (2003).

    CAS  Google Scholar 

  96. Mol, G. N., Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15, 1155–1159 (2005).

    CAS  Google Scholar 

  97. Sousa, M. E., Broer, D. J., Bastiaansen, C. W. M., Freund, L. B. & Crawford, G. P. Isotropic islands in a cholesteric sea — patterned thermal expansion for responsive surface topologies. Adv. Mater. 19, 1842–1845 (2006).

    Google Scholar 

  98. Elias, A. L., Harris, K. D., Bastiaansen, C. W. M., Broer, D. J. & Brett, M. J. Photopatterned liquid crystalline polymers for microactuators. J. Mater. Chem. 16, 2903–2912 (2006).

    CAS  Google Scholar 

  99. Rousseau, I. A. & Mather, P. T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003).

    CAS  Google Scholar 

  100. Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 015501 (2001).

    CAS  Google Scholar 

  101. Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

    CAS  Google Scholar 

  102. Yu, Y. L. & Ikeda, T. Soft actuators based on liquid-crystalline elastomers. Angew. Chem. Int. Edn 45, 5416–5418 (2006).

    CAS  Google Scholar 

  103. Jiang, H., Kelch, S. & Lendlein, A. Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2005).

    Google Scholar 

  104. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    CAS  Google Scholar 

  105. Lehmann, W. et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410, 447–450 (2001).

    CAS  Google Scholar 

  106. Courty, S., Mine, J., Tajbakhsh, A. R. & Terentjev, E. M. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys. Lett. 64, 654–660 (2003).

    CAS  Google Scholar 

  107. Shenoy, D. K., Thomsen, D. L., Srinivasan, A., Keller, P. & Ratna, B. R. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors Actuators A 96, 184–188 (2002).

    CAS  Google Scholar 

  108. Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. A glassy bending-mode polymeric actuator which deforms in response to solvent polarity. Macromol. Rapid Commun. 27, 1323–1329 (2006).

    CAS  Google Scholar 

  109. Harris, K. D., Bastiaansen, C. W. M., Lub, J. & Broer, D. J. Self-assembled polymer films for controlled agent-driven motion. Nano Lett. 5, 1857–1860 (2005).

    CAS  Google Scholar 

  110. Yusuf, Y., Cladis, P. E., Brand, H. R., Finkelmann, H. & Kai, S. Hystereses of volume changes in liquid single crystal elastomers swollen with low molecular weight liquid crystal. Chem. Phys. Lett. 389, 443–448 (2004).

    CAS  Google Scholar 

  111. Miyazaki, T., Yamaoka, K., Gong, J. P. & Osada, Y. Hydrogels with crystalline or liquid crystalline structure. Macromol. Rapid Commun. 23, 447–455 (2002).

    CAS  Google Scholar 

  112. de Gennes, P. G. Some remarks on polymer actuators (Resume). Polym. Adv. Technol. 13, 681–682 (2002).

    CAS  Google Scholar 

  113. Hébert, M., Kant, R. & de Gennes, P.-G. Dynamics and thermodynamics of artificial muscles based on nematic gels. J. Phys. I 7, 909–919 (1997).

    Google Scholar 

  114. Shenoy, D. K., Thomsen, D. L. III, Srinivasan, A., Keller, P. & Ratna, B. R. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors Actuators A 96, 184–188 (2002).

    CAS  Google Scholar 

  115. Thomsen, D. L. et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875 (2001).

    CAS  Google Scholar 

  116. Spillmann, C. M., Naciri, J., Chen, M. S., Srinivasan, A. & Ratna, B. R. Tuning the physical properties of a nematic liquid crystal elastomer actuator. Liq. Cryst. 33, 373–380 (2006).

    CAS  Google Scholar 

  117. Li, M. H. & Keller, P. Artificial muscles based on liquid crystal elastomers. Phil. Trans. R. Soc. A 364, 2763–2777 (2006).

    CAS  Google Scholar 

  118. Buguin, A., Li, M. H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Science Foundation (DMR-0506072) as well as useful discussions with J. W. McMurdy, M. K. McCamley, L. J. Shelton and F. Y. Biga of Brown University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Crawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woltman, S., Jay, G. & Crawford, G. Liquid-crystal materials find a new order in biomedical applications. Nature Mater 6, 929–938 (2007). https://doi.org/10.1038/nmat2010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing