Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals

A Corrigendum to this article was published on 13 November 2007

Abstract

Crack-tip behaviour in metals is among the most basic problems in mechanics of materials. Yet, long-standing experimental evidence suggests that crack-tip twinning in face-centred-cubic (f.c.c.) metals is highly dependent on the material, temperature and loading rate, and previous simulations and models predict twinning in aluminium, where it has never been observed. Here, this discrepancy between theory and experiment is resolved through a new model guided and validated by extensive multiscale simulations. Both the analytic model and simulations reveal a transition from crack-tip twinning at short times to full dislocation formation at long times. Applied to a host of f.c.c. metals, the model agrees with experimental trends as it predicts large differences in the thermal activation needed for full dislocation emission to dominate. More broadly, this work demonstrates the necessity of multiscale modelling and attention to rate dependence for accurate description of material behaviour and computationally guided material design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of two possible modes of crack-tip plasticity in f.c.c. metals.
Figure 2: Cross-section of the simulation cell showing the crack and crystal geometry used in this work.
Figure 3: Time to nucleation of a trailing or twinning partial versus applied load in Al at 300 K.
Figure 4: Slip potential Φ along the leading-to-trailing and leading-to-twinning slip paths for Al (ref. 31) at 300 K.
Figure 5: Activation energy per unit length versus applied load for both twinning and trailing partial emission for a range of f.c.c. metals.

Similar content being viewed by others

References

  1. English, A. T. & Chin, G. Y. On the variation of wire texture with stacking fault energy in f.c.c. metals and alloys. Acta Metall. 13, 1013–1016 (1965).

    Article  CAS  Google Scholar 

  2. Venables, J. in Proc. of the Mettallurgical Society Conference Vol. 25 (ed. Reed-Hill, R.) 77–111 (Gordon and Breach Science, New York, 1963).

    Google Scholar 

  3. Adamesku, R., Grebenkin, S., Yermaakov, A. & Panfilov, P. On mechanical twinning in iridium under compression at room temperature. J. Mater. Sci. Lett. 13, 865–867 (1994).

    Article  CAS  Google Scholar 

  4. Fortes, M. & Ralph, B. Deformation twinning and double twinning in iridium. J. Less-Common Met. 22, 201–208 (1970).

    Article  CAS  Google Scholar 

  5. Blewitt, T. H., Coltman, R. R. & Redman, J. K. Low-temperature deformation of copper single crystals. J. Appl. Phys. 28, 651–660 (1957).

    Article  CAS  Google Scholar 

  6. Murr, L. & Esquivel, E. Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization. J. Mater. Sci. 39, 1153–1168 (2004).

    Article  CAS  Google Scholar 

  7. Thornton, P. & Mitchell, T. Deformation twinning in alloys at low temperatures. Phil. Mag. 7, 361–375 (1962).

    Article  Google Scholar 

  8. Haasen, P. Plastic deformation of nickel single crystals at low temperatures. Phil. Mag. 3, 384–418 (1958).

    Article  CAS  Google Scholar 

  9. Gray, G. I. & Huang, J. Influence of repeated shock loading on the substructure evolution of 99. 99 wt. percent aluminum. Mater. Sci. Eng. A 145, 21–35 (1991).

    Article  Google Scholar 

  10. Tadmor, E. & Hai, S. A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765–793 (2003).

    Article  CAS  Google Scholar 

  11. Farkas, D., Duranduru, M., Curtin, W. A. & Ribbens, C. Multiple-dislocation emission from the crack tip in the ductile fracture of Al. Phil. Mag. A 81, 1241–1255 (2001).

    Article  CAS  Google Scholar 

  12. Hai, S. & Tadmor, E. B. Deformation twinning at aluminum crack tips. Acta Mater. 51, 117–131 (2003).

    Article  CAS  Google Scholar 

  13. Van Swygenhoven, H., Derlet, P. & Froseth, A. Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54, 1975–1983 (2006).

    Article  CAS  Google Scholar 

  14. Zhu, T., Li, J., Samanta, A., Kim, H. G. & Suresh, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. 104, 3031–3036 (2007).

    Article  CAS  Google Scholar 

  15. Curtin, W. A., Olmsted, D. L. & Hector, L. G. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nature Mater. 5, 875–880 (2006).

    Article  CAS  Google Scholar 

  16. Caillard, D. & Martin, J. Thermally Activated Mechanisms in Crystal Plasticity (Pergamon Materials Series, Elsevier, Oxford, 2003).

    Google Scholar 

  17. Rice, J. R. & Beltz, G. E. Activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333–360 (1994).

    Article  CAS  Google Scholar 

  18. Hess, B., Thijsse, B. J. & Van der Giessen, E. Molecular dynamics study of dislocation nucleation from a crack tip. Phys. Rev. B 71, 054111 (2005).

    Article  Google Scholar 

  19. Qu, S., Shastry, V., Curtin, W. A. & Miller, R. E. A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model. Simul. Mater. Sci. Eng. 13, 1101–1118 (2005).

    Article  CAS  Google Scholar 

  20. Voter, A. F. Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, R13985–R13988 (1998).

    Article  CAS  Google Scholar 

  21. Rice, J. Dislocation nucleation from a crack tip. An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271 (1992).

    Article  CAS  Google Scholar 

  22. Zhu, T., Li, J. & Yip, S. Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93, 025503 (2004).

    Article  Google Scholar 

  23. Hasnaoui, A., Van Swygenhoven, H. & Derlet, P. M. Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Phys. Rev. B 66, 184112 (2002).

    Article  Google Scholar 

  24. Meyer, R. & Lewis, L. J. Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials. Phys. Rev. B 66, 052106 (2002).

    Article  Google Scholar 

  25. Asaro, R. J. & Suresh, S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005).

    Article  CAS  Google Scholar 

  26. Kumar, K., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  27. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. & Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nature Mater. 3, 43–47 (2004).

    Article  CAS  Google Scholar 

  28. Van Swygenhoven, H., Derlet, P. & Froseth, A. Stacking fault energies and slip in nanocrystalline metals. Nature Mater. 3, 399–403 (2004).

    Article  CAS  Google Scholar 

  29. Tadmor, E. B. & Bernstein, N. A first-principles measure for the twinnability of FCC metals. J. Mech. Phys. Solids 52, 2507–2519 (2004).

    Article  CAS  Google Scholar 

  30. Horstemeyer, M., Baskes, M. & Plimpton, S. Computational nanoscale plasticity simulations using embedded atom potentials. Theory Appl. Fract. Mech. 37, 49–98 (2001).

    Article  CAS  Google Scholar 

  31. Ercolessi, F. & Adams, J. B. Interatomic potentials from 1st-principles calculations—the force-matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  CAS  Google Scholar 

  32. Sih, G., Paris, P. & Irwin, G. R. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1, 189–203 (1965).

    Article  CAS  Google Scholar 

  33. Mishin, Y., Farkas, D., Mehl, M. J. & Papaconstantopoulos, D. A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999).

    Article  CAS  Google Scholar 

  34. Bernstein, N. & Tadmor, E. B. Tight-binding calculations of stacking energies and twinnability in fcc metals. Phys. Rev. B 69, 094116 (2004).

    Article  Google Scholar 

  35. Lide, D. (ed.) CRC Handbook of Chemistry and Physics 82nd edn (CRC Press, New York, 2001).

  36. Hirth, J. & Lothe, J. Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  37. Li, J. AtomEye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11, 173–177 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research, Materials Research Division, through Grant No. N00014-05-1-0705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Curtin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, D., Curtin, W. & Qu, S. Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nature Mater 6, 876–881 (2007). https://doi.org/10.1038/nmat2030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing