Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores

Abstract

Even after a decade or so of research, the direct synthesis of highly crystalline mesoporous transition-metal oxides that are thermally stable and well ordered still constitutes a major challenge. Although various soft- and hard-templating approaches have been developed in the past, they usually suffer from multiple, tedious steps and often result in poor structure control. For many applications including power generation and energy conversion, however, high crystallinity and controlled mesoporosity are a prerequisite. To this end, here we report on an approach established for group-IV (titanium) and group-V (niobium) oxides, with potential applications to photovoltaic cells and fuel cells, respectively, which overcomes previous limitations. It gives direct access to the desired materials in a ‘one-pot’ synthesis using block copolymers with an sp2-hybridized carbon-containing hydrophobic block as structure-directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions. This in situ carbon is sufficient to act as a rigid support keeping the pores of the oxides intact while crystallizing at temperatures as high as 1,000 C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of CASH method.
Figure 2: Materials characterization by X-ray.
Figure 3: Materials characterization by electron microscopy.
Figure 4: Materials characterization by nitrogen physisorption.
Figure 5: Experimental evidence of in situ carbon formation.
Figure 6: Electron diffraction from crystalline materials.

Similar content being viewed by others

References

  1. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  2. Schüth, F. & Schmidt, W. Microporous and mesoporous materials. Adv. Mater. 14, 629–638 (2002).

    Article  Google Scholar 

  3. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  4. Asefa, T., MacLachan, M. J., Coombs, N. & Ozin, G. A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999).

    Article  CAS  Google Scholar 

  5. Garcia, C., Zhang, Y. M., DiSalvo, F. & Wiesner, U. Mesoporous aluminosilicate materials with superparamagnetic γ-Fe2O3 particles embedded in the walls. Angew. Chem. Int. Edn 42, 1526–1530 (2003).

    Article  CAS  Google Scholar 

  6. Mokaya, R. Ultrastable mesoporous aluminosilicates by grafting routes. Angew. Chem. Int. Edn 38, 2930–2934 (1999).

    Article  CAS  Google Scholar 

  7. Ohtani, B., Ogawa, Y. & Nishimoto, S. J. Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Phys. Chem. B 101, 3746–3752 (1997).

    Article  CAS  Google Scholar 

  8. Antonelli, D. M. & Ying, Y. J. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Edn 35, 426–430 (1996).

    Article  CAS  Google Scholar 

  9. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. & Schüth, F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Edn 25, 541–543 (1996).

    Article  Google Scholar 

  10. Shirokura, N. et al. Synthesis of crystallized mesoporous transition metal oxides by silicone treatment of the oxide precursor. Chem. Commun. 20, 2188–2190 (2006).

    Article  Google Scholar 

  11. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  12. Lee, B., Lu, D., Kondo, J. N. & Domen, K. Three-dimensionally ordered mesoporous niobium oxide. J. Am. Chem. Soc. 124, 11256–11257 (2002).

    Article  CAS  Google Scholar 

  13. Wu, C.-W., Ohsuna, T., Kuwabara, M. & Kuroda, K. Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. J. Am. Chem. Soc. 128, 4544–4545 (2006).

    Article  CAS  Google Scholar 

  14. Feng, J. & Bruce, P. G. Two and three dimensional mesoporous iron oxides with microporous walls. Angew. Chem. Int. Edn 43, 5958–5961 (2004).

    Article  Google Scholar 

  15. He, X. & Antonelli, D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew. Chem. Int. Edn 41, 214–229 (2002).

    Article  CAS  Google Scholar 

  16. Antonelli, D. M. & Ying, J. Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew. Chem. Int. Edn 34, 2014–2017 (1995).

    Article  CAS  Google Scholar 

  17. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813–2826 (1999).

    Article  CAS  Google Scholar 

  18. Jiao, F. et al. Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468–5474 (2006).

    Article  CAS  Google Scholar 

  19. Jiao, F. et al. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 128, 12905–12909 (2006).

    Article  CAS  Google Scholar 

  20. Xiaoyong, L. et al. Ordered mesoporous copper oxide with crystalline walls. Angew. Chem. Int. Edn 46, 738–741 (2007).

    Article  Google Scholar 

  21. Roggenbuck, J. & Tiemann, M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. J. Am. Chem. Soc. 127, 1096–1097 (2005).

    Article  CAS  Google Scholar 

  22. Li, W.-C., Lu, A.-H., Weidenthaler, C. & Schüth, F. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 16, 5676–5681 (2004).

    Article  CAS  Google Scholar 

  23. Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).

    Article  CAS  Google Scholar 

  24. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  25. Lee, J., Yoon, S., Hyeon, T., Oh, S. M. & Kim, K. B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 21, 2177–2178 (1999).

    Article  Google Scholar 

  26. Zukalova, M. et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5, 1789–1792 (2005).

    Article  CAS  Google Scholar 

  27. Drew, K., Girishkumar, G., Vinodgopal, K. & Kamat, P. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt–Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 109, 11851–11857 (2005).

    Article  CAS  Google Scholar 

  28. Templin, M. et al. Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278, 1795–1798 (1997).

    Article  CAS  Google Scholar 

  29. Warren, S. C., DiSalvo, F. J. & Wiesner, U. Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nature Mater. 6, 156–161 (2007).

    Article  CAS  Google Scholar 

  30. Katou, T. et al. Crystallization of an ordered mesoporous Nb–Ta oxide. Angew. Chem. Int. Edn 42, 2382–2385 (2003).

    Article  CAS  Google Scholar 

  31. Brezesinski, T., Erpen, C., Iimura, K. & Smarsly, B. Mesostructured crystalline ceria with a bimodal pore system using block copolymers and ionic liquids as rational templates. Chem. Mater. 17, 1683–1690 (2005).

    Article  CAS  Google Scholar 

  32. Ba, J., Polleux, J., Antonietti, M. & Niederberger, M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 17, 2509–2512 (2005).

    Article  CAS  Google Scholar 

  33. Acosta, S., Corriu, R., Leclercq, D., Mutin, P. H. & Vioux, A. Novel non-hydrolytic sol–gel route to metal oxides. J. Sol–Gel Sci. Technol. 2, 25–28 (1994).

    Article  CAS  Google Scholar 

  34. Tanev, P. T. & Pinnavaia, T. J. A neutral templating route to mesoporous molecular sieves. Science 267, 865–867 (1995).

    Article  CAS  Google Scholar 

  35. Lee, J., Yoon, S., Oh, S. M., Shin, C.-H. & Hyeon, T. Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv. Mater. 12, 359–362 (2000).

    Article  CAS  Google Scholar 

  36. Krawitz, A. D. Introduction to Diffraction in Materials Science and Engineering 168 (Wiley, New York, 2001).

    Google Scholar 

  37. Finnefrock, A. C., Ulrich, R., Toombes, G. E. S., Gruner, S. M. & Wiesner, U. The plumber’s nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. J. Am. Chem. Soc. 125, 13084–13093 (2003).

    Article  CAS  Google Scholar 

  38. de Boer, J. H. The Structure and Properties of Porous Materials (Butterworths, London, 1958).

    Google Scholar 

  39. IUPAC, Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 87, 603 (1957).

    Google Scholar 

  40. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951).

    Article  CAS  Google Scholar 

  41. Liang, C., Hong, K., Guiochon, G. A., Mays, J. W. & Dai, S. Nanoporous films: Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Edn 43, 5785–5789 (2004).

    Article  CAS  Google Scholar 

  42. Kumar, C. P., Gopal, N. O., Wang, T. C., Wong, M.-S. & Ke, S. C. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J. Phys. Chem. B 110, 5223–5229 (2006).

    Article  CAS  Google Scholar 

  43. Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater. 2, 159–163 (2003).

    Article  CAS  Google Scholar 

  44. Hsieh, H. L. & Quirk, R. P. Anionic Polymerization: Principles and Practical Applications (Marcel Dekker, New York, 1996).

    Book  Google Scholar 

  45. Allgaier, J., Poppe, A., Willner, L. & Richter, D. Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macromolecules 30, 1582–1586 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Department of Energy (DE-FG02 87ER45298) and the National Science Foundation (DMR-0605856). The work was further supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-214-D00298). Cornell High Energy Synchrotron Source (CHESS) is a national user facility supported by the National Science Foundation and the National Institute of General Medical Sciences. We thank A. Burns for help with the graphics and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Wiesner.

Ethics declarations

Competing interests

We are in the process of generating a patent application based on the content of this paper.

Supplementary information

Supplementary Information

Supplementary tables S1-S2 and Supplementary figures S1-S10 (PDF 755 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Christopher Orilall, M., Warren, S. et al. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Mater 7, 222–228 (2008). https://doi.org/10.1038/nmat2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing