Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces

Abstract

The ability to manipulate dipole orientation in ferroelectric oxides holds promise as a method to tailor surface reactivity for specific applications. As ferroelectric domains can be patterned at the nanoscale1, domain-specific surface chemistries may provide a method for fabrication of nanoscale devices. Although studies over the past 50 yr have suggested that ferroelectric domain orientation may affect the energetics of adsorption, definitive evidence is still lacking2,3,4,5. Domain-dependent sticking coefficients are observed using temperature-programmed desorption and scanning surface potential microscopy, supported by first-principles calculations of the reaction coordinate. The first unambiguous observations of differences in the energetics of physisorption on ferroelectric domains are presented here for CH3OH and CO2 on BaTiO3 and Pb(Ti0.52Zr0.48)O3 surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface and domain structure of BaTiO3 samples.
Figure 2: TPD spectra obtained following exposure of the BaTiO3 thin film to a subsaturation 20 L dose of CH3OH as a function of ferroelectric polarization.
Figure 3: Influence of CO2 adsorption on the surface potential of BaTiO3(001) and a PZT thin film.
Figure 4: Precursor-mediated molecular adsorption on defective ferroelectric oxide surfaces.

Similar content being viewed by others

References

  1. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  CAS  Google Scholar 

  2. Parravano, G. Ferroelectric transitions and heterogenous catalysis. J. Chem. Phys. 20, 342–343 (1952).

    Article  CAS  Google Scholar 

  3. Cabrera, A. L. et al. Catalysis of reactions involving oxides of carbon and nitrogen by the ferroelectric compound potassium niobate. Mater. Res. Bull. 14, 1155–1166 (1979).

    Article  CAS  Google Scholar 

  4. Cabrera, A. L., Tarrach, G., Lagos, P. & Cabrera, G. B. Influence of crystallographic phase transitions in small ferroelectric particles on carbon dioxide adsorption. Ferroelectrics 281, 53–66 (2002).

    Article  CAS  Google Scholar 

  5. Cabrera, A. L., Vargas, F., Zarate, R. A., Cabrera, G. B. & Espinosa-Gangas, J. The size dependent adsorption properties of ferroelectric particles. J. Phys. Chem. Solids 62, 927–932 (2001).

    Article  CAS  Google Scholar 

  6. Kalinin, S. V. et al. Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795–799 (2004).

    Article  CAS  Google Scholar 

  7. Giocondi, J. L. & Rohrer, G. S. Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 13, 241–242 (2001).

    Article  CAS  Google Scholar 

  8. Giocondi, J. L. & Rohrer, G. S. Structure sensitivity of photochemical oxidation and reduction reactions on SrTiO3 surfaces. J. Am. Ceram. Soc. 86, 1182–1189 (2003).

    Article  CAS  Google Scholar 

  9. Yun, Y., Kampschulte, L., Li, M., Liao, D. & Altman, E. I. Effect of ferroelectric poling on the adsorption of 2-propanol on LiNbO3(0001). J. Phys. Chem. C 111, 13951–13956 (2007).

    Article  CAS  Google Scholar 

  10. Henderson, M. A., Otero-Tapia, S. & Castro, M. E. The chemistry of methanol on the surface: the TiO2 (110) influence of vacancies and coadsorbed species. Faraday Discuss. 114, 313–329 (1999).

    Article  CAS  Google Scholar 

  11. Kim, K. S. & Barteau, M. A. Reactions of methanol on TiO2(001) single crystal surfaces. Surf. Sci. 223, 13–32 (1989).

    Article  CAS  Google Scholar 

  12. Farfan-Arribas, E. & Madix, R. J. Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2(110) surfaces. Surf. Sci. 544, 241–260 (2003).

    Article  CAS  Google Scholar 

  13. Ferrizz, R. M., Wong, G. S., Egami, T. & Vohs, J. M. Structure sensitivity of the reaction of methanol on ceria. Langmuir 17, 2464–2470 (2001).

    Article  CAS  Google Scholar 

  14. Dilara, P. A. & Vohs, J. M. Structure sensitivity in the reaction of methanol on ZrO2 . Surf. Sci. 321, 8–18 (1994).

    Article  CAS  Google Scholar 

  15. Lohokare, S. P., Crane, E. L., Dubois, L. H. & Nuzzo, R. G. Collision-induced activation of the beta-hydride elimination reaction of isobutyl iodide dissociatively chemisorbed on Al(111). J. Chem. Phys. 108, 8640–8650 (1998).

    Article  CAS  Google Scholar 

  16. Brown, D. E., Moffatt, D. J. & Wolkow, R. A. Isolation of an intrinsic precursor to molecular chemisorption. Science 279, 542–544 (1998).

    Article  CAS  Google Scholar 

  17. Carlsson, A. F. & Madix, R. J. Intrinsic and extrinsic precursors to adsorption: Coverage and temperature dependence of Kr adsorption on Pt(111). J. Chem. Phys. 114, 5304–5312 (2001).

    Article  CAS  Google Scholar 

  18. Kisliuk, P. The sticking probabilities of gases chemisorbed on the surfaces of solids. J. Phys. Chem. Solids 3, 95–101 (1957).

    Article  CAS  Google Scholar 

  19. Bronsted, J. N. Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928).

    Article  CAS  Google Scholar 

  20. Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938).

    Article  CAS  Google Scholar 

  21. Schwartz, R. W. et al. Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. J. Am. Ceram. Soc. 82, 2359–2367 (1999).

    Article  CAS  Google Scholar 

  22. Kalinin, S. V. & Bonnell, D. A. Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411 (2001).

    Article  Google Scholar 

  23. Kalinin, S. V., Johnson, C. Y. & Bonnell, D. A. Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface. J. Appl. Phys. 91, 3816–3823 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support of this work by the NSF MRSEC program (grant no. DMR05-20020). A.M.K. and A.M.R. also acknowledge support from the US Air Force Office of Scientific Research (grant no. FA9550-07-1-0397) and the US Department of Energy, Division of Basic Energy Sciences (grant no. DE-FG02-07ER15920) and computational support from the HPCMO of the US DoD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Vohs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhao, M., Garra, J. et al. Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nature Mater 7, 473–477 (2008). https://doi.org/10.1038/nmat2198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing