Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome

Abstract

In the context of the fast-growing demand for innovative high-performance display technologies, the perspective of manufacturing low-cost functional materials that can be easily processed over large areas or finely printed into individual pixels, while being mechanically deformable, has motivated the development of novel electronically active organic components fulfilling the requirements for flexible displays and portable applications. Among all technologies relying on a low-power stimulated optical change, non-emissive organic electrochromic devices (ECDs) offer the advantage of being operational under a wide range of viewing angles and lighting conditions spanning direct sunlight as desired for various applications including signage, information tags and electronic paper. Combining mechanical flexibility, high contrast ratios and fast response times, along with colour tunability through structural control, polymeric electrochromes constitute the most attractive organic electronics for tomorrow’s reflective/transmissive ECDs and displays1,2,3. Although red, blue4 and most recently green5,6,7,8,9,10 electrochromic polymers (ECPs) required for additive primary colour space were investigated, attempts to make saturated black ECPs have not been reported, probably owing to the complexity of designing materials absorbing effectively over the whole visible spectrum. Here, we report on the use of the donor–acceptor approach to make the first neutral-state black polymeric electrochrome. Processable black-to-transmissive ECPs promise to affect the development of both reflective and transmissive ECDs by providing lower fabrication and processing costs through printing, spraying and coating methods, along with good scalability when compared with their traditional inorganic counterparts1,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible absorption of P1, P2, P3 and P4.
Figure 2: Visible absorption of P5, P6, P7 and P8.
Figure 3: Spectroelectrochemistry of polymer P9.
Figure 4: Electrochromic performance of P9.

Similar content being viewed by others

References

  1. Reynolds, J. R. et al. Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 16, 4401–4412 (2004).

    Article  Google Scholar 

  2. Sonmez, G. Polymeric electrochromics. Chem. Commun. 5251–5259 (2005).

  3. Sonmez, G. & Wudl, F. Completion of the three primary colours: The final step toward plastic displays. J. Mater. Chem. 15, 20–22 (2005).

    Article  CAS  Google Scholar 

  4. Skotheim, T. A. & Reynolds, J. R. Handbook of Conducting Polymers 3rd edn (CRC Press, Boca Raton, 2007).

    Google Scholar 

  5. Sonmez, G., Shen, C. K. F., Rubin, Y. & Wudl, F. A red, green, and blue (RGB) polymeric electrochromic device (PECD): The dawning of the PECD era. Angew. Chem. Int. Ed. 43, 1498–1502 (2004).

    Article  CAS  Google Scholar 

  6. Durmus, A., Gunbas, G. E., Camurlu, P. & Toppare, L. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun. 3246–3248 (2007).

  7. Chang, C.-W. & Liou, G.-S. Stably anodic green electrochromic aromatic poly(amine-amide-imide)s: Synthesis and electrochromic properties. Org. Electron. 8, 662–672 (2007).

    Article  CAS  Google Scholar 

  8. Chang, C.-W., Hsiao, S.-H. & Liou, G.-S. Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties. J. Mater. Chem. 17, 1007–1015 (2007).

    Article  CAS  Google Scholar 

  9. Gunbas, G. E., Durmus, A. & Toppare, L. Could green be greener? novel donor-acceptor-type electrochromic polymers: Towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater. 20, 691–695 (2008).

    Article  CAS  Google Scholar 

  10. Beaujuge, P. M., Ellinger, S. & Reynolds, J. R. Spray processable green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers. Adv. Mater. 20, 2772–2776 (2008).

    Article  CAS  Google Scholar 

  11. Somani, P. R. & Radhakrishnan, S. Electrochromic materials and devices: Present and future. Mater. Chem. Phys. 77, 117–133 (2003).

    Article  CAS  Google Scholar 

  12. Monk, P. M. S., Mortimer, R. J. & Rosseinsky, D. R. Electrochromism and Electrochromic Devices (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  13. Deb, S. K. Novel electrophotographic system. Appl. Opt. Suppl. 192–195 (1969).

    Article  Google Scholar 

  14. Azens, A. & Granqvist, C. G. Electrochromic smart windows: Energy efficiency and device aspects. J. Solid State Electrochem. 7, 64–68 (2003).

    Article  CAS  Google Scholar 

  15. Granqvist, C. G. Oxide electrochromics: Why, how, and whither. Sol. Energy Mater. Sol. Cells 92, 203–208 (2008).

    Article  CAS  Google Scholar 

  16. Argun, A. A., Cirpan, A. & Reynolds, J. R. The first truly all-polymer electrochromic devices. Adv. Mater. 15, 1338–1341 (2003).

    Article  CAS  Google Scholar 

  17. Möller, M., Asaftei, S., Corr, D., Ryan, M. & Walder, L. Switchable electrochromic images based on a combined top-down bottom-up approach. Adv. Mater. 16, 1558–1562 (2004).

    Article  Google Scholar 

  18. Monk, P. M. S., Delage, F. & Costa Vieira, S. M. Electrochromic paper: Utility of electrochromes incorporated in paper. Electrochim. Acta 46, 2195–2202 (2001).

    Article  CAS  Google Scholar 

  19. Corr, D. et al. Coloured electrochromic ‘paper-quality’ displays based on modified mesoporous electrodes. Solid State Ion. 165, 315–321 (2003).

    Article  CAS  Google Scholar 

  20. Kobayashi, T. et al. Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem. 161, 419–423 (1984).

    Article  CAS  Google Scholar 

  21. Holmes, A. B. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  Google Scholar 

  22. Friend, R. H. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998).

    Article  Google Scholar 

  23. Kim, Y. et al. Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Chem. Mater. 16, 4812–4818 (2004).

    Article  CAS  Google Scholar 

  24. Alam, M. M. & Jenekhe, S. A. Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem. Mater. 16, 4647–4656 (2004).

    Article  CAS  Google Scholar 

  25. Veenstra, S. C. et al. Photovoltaic properties of a conjugated polymer blend of MDMO-PPV and PCNEPV. Chem. Mater. 16, 2503–2508 (2004).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J. Am. Chem. Soc. 128, 4911–4916 (2006).

    Article  Google Scholar 

  27. Kietzke, T., Egbe, D. A. M., Horhold, H. H. & Neher, D. Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules 39, 4018–4022 (2006).

    Article  CAS  Google Scholar 

  28. Heeger, A. J. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  Google Scholar 

  29. Marder, S. R. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007).

    Article  Google Scholar 

  30. Salzner, U. Does the donor–acceptor concept work for designing synthetic metals? 1. Theoretical investigation of poly(3-cyano-3′-hydroxybithiophene). J. Phys. Chem. B 106, 9214–9220 (2002).

    Article  CAS  Google Scholar 

  31. Salzner, U. & Kose, M. E. Does the donor–acceptor concept work for designing synthetic metals? 2. Theoretical investigation of copolymers of 4-(dicyanomethylene)-4h-cyclopenta[2,1-b:3,4-b′] dithiophene and 3,4-(ethylenedioxy)thiophene. J. Phys. Chem. B 106, 9221–9226 (2002).

    Article  CAS  Google Scholar 

  32. Stille, J. K. The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles [new synthetic methods (58)]. Angew. Chem. Int. Ed. 25, 508–524 (1986).

    Article  Google Scholar 

  33. CIE No. 15.2004, Colorimetry, 3rd edn (Commission Internationale de l’Eclairage, Vienna, Austria, 2004).

  34. Havinga, E. E., Hoeve, W. & Wynberg, H. Alternate donor–acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines. Synth. Met. 55, 299–306 (1993).

    Article  CAS  Google Scholar 

  35. Wudl, F. et al. A processable green polymeric electrochromic. Macromolecules 38, 669–675 (2005).

    Article  Google Scholar 

  36. Gunes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Article  Google Scholar 

  37. Thompson, B. C. & Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the AFOSR (FA9550-06-1-0192) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Reynolds.

Supplementary information

Supplementary Information

Supplementary Information (PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaujuge, P., Ellinger, S. & Reynolds, J. The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nature Mater 7, 795–799 (2008). https://doi.org/10.1038/nmat2272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing