Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Spin routes in organic semiconductors

A Corrigendum to this article was published on 11 September 2009

This article has been updated

Abstract

Organic semiconductors are characterized by a very low spin–orbit interaction, which, together with their chemical flexibility and relatively low production costs, makes them an ideal materials system for spintronics applications. The first experiments on spin injection and transport occurred only a few years ago, and since then considerable progress has been made in improving performance as well as in understanding the mechanisms affecting spin-related phenomena. Nevertheless, several challenges remain in both device performance and fundamental understanding before organic semiconductors can compete with inorganic semiconductors or metals in the development of realistic spintronics applications. In this article we summarize the main experimental results and their connections with devices such as light-emitting diodes and electronic memory devices, and we outline the scientific and technological issues that make organic spintronics a young but exciting field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organic spintronic devices.
Figure 2: Magnetoresistance of LSMO/Co vertical OSPDs.
Figure 3: Tunnelling MR.
Figure 4: Non-electrical spin-injection experiments.
Figure 5: Spin-OLED.

Similar content being viewed by others

Change history

  • 11 September 2009

    In Table 1 of the version of this Progress Article originally published, the structures for poly(3-hexylthiophene) (RRP3HT), tetraphenylporphyrin (TPP), pentacene, rubrene and copper phthalocyanine (CuPc) were incorrect. These errors have been corrected in the HTML and PDF versions.

References

  1. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  2. Naber, W. J. M., Faez, S. & van der Wiel, W. G. Organic spintronics. J. Phys. D 40, R205–R228 (2007).

    Article  CAS  Google Scholar 

  3. Sanvito, S. Spintronics goes plastic. Nature Mater. 6, 803–804 (2007).

    Article  CAS  Google Scholar 

  4. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  5. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  6. Bratkovsky, A. M. Spintronic effects in metallic, semiconductor, metal-oxide and metal-semiconductor heterostructures. Rep. Prog. Phys. 71, 026502 (2008).

    Article  Google Scholar 

  7. Schmidt, G. Concepts for spin injection into semiconductors - a review. J. Phys. D 38, R107–R122 (2005).

    Article  CAS  Google Scholar 

  8. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  9. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  10. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  11. Harris, C. B., Schlupp, R. L. & Schuch, H. Optically detected electron spin locking and rotary echo trains in molecular excited states. Phys. Rev. Lett. 30, 1019–1022 (1973).

    Article  CAS  Google Scholar 

  12. Krinichnyi, V. I., Chemerisov, S. D. & Lebedev, Y. S. EPR and charge-transport studies of polyaniline. Phys. Rev. B 55, 16233–16244 (1997).

    Article  CAS  Google Scholar 

  13. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  14. Arkhipov, V. I., Emelianova, E. V., Tak, Y. H. & Bassler, H. Charge injection into light-emitting diodes: Theory and experiment. J. Appl. Phys. 84, 848–856 (1998).

    Article  CAS  Google Scholar 

  15. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  16. Mazin, I. I. How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427–1430 (1999).

    Article  CAS  Google Scholar 

  17. Scott, J. C. Metal-organic interface and charge injection in organic electronic devices. J. Vac. Sci. Technol. A 21, 521–531 (2003).

    Article  CAS  Google Scholar 

  18. Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).

    Article  CAS  Google Scholar 

  19. De Teresa, J. M. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article  CAS  Google Scholar 

  20. Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    Article  CAS  Google Scholar 

  21. Evetts, J. E. et al. Defect-induced spin disorder and magnetoresistance in single-crystal and polycrystal rare-earth manganite thin films. Philos. Trans. R. Soc. Lond. A 356, 1593–1613 (1998).

    Article  CAS  Google Scholar 

  22. Horowitz, G., Fichou, D., Peng, X. Z., Xu, Z. G. & Garnier, F. A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 72, 381–384 (1989).

    Article  CAS  Google Scholar 

  23. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  24. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  25. Wang, F. J., Yang, C. G., Vardeny, Z. V. & Li, X. G. Spin response in organic spin valves based on La2/3Sr1/3MnO3 electrodes. Phys. Rev. B 75, 245324 (2007).

    Article  Google Scholar 

  26. Riminucci, A. et al. Negative spin valve effects in manganite/organic based devices. http://arxiv.org/abs/cond-mat/0701603 (2007).

  27. Dediu, V. et al. Room-temperature spintronic effect in Alq3-based hybrid devices. Phys. Rev. B 78, 115203 (2008).

    Article  Google Scholar 

  28. Majumdar, S., Majumdar, H. S., Laiho, R. & Osterbacka, R. Comparing small molecules and polymer for future organic spin-valves. J. Alloys Compd. 423, 169–171 (2006).

    Article  CAS  Google Scholar 

  29. Xu, W. et al. Tunneling magnetoresistance observed in La0.67Sr0.33MnO3/organic molecule/Co junctions. Appl. Phys. Lett. 90, 072506 (2007).

    Article  Google Scholar 

  30. Liu, S.-W., Lee, J.-H., Lee, C.-C., Chen, C.-T. & Wang, J.-K. Charge carrier mobility of mixed-layer organic light-emitting diodes. Appl. Phys. Lett. 91, 142106 (2007).

    Article  Google Scholar 

  31. Morley, N. A. et al. Room temperature organic spintronics. J. Appl. Phys. 103, 07F306 (2008).

    Article  Google Scholar 

  32. Wang, F. J., Xiong, Z. H., Wu, D., Shi, J. & Vardeny, Z. V. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synth. Met. 155, 172–175 (2005).

    Article  CAS  Google Scholar 

  33. Park, J.-H. et al. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3 . Phys. Rev. Lett. 81, 1953–1956 (1998).

    Article  CAS  Google Scholar 

  34. Vinzelberg, H. et al. Low temperature tunneling magnetoresistance on (La, Sr)MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 103, 093720 (2008).

    Article  Google Scholar 

  35. Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin-polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  36. Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004).

    Article  CAS  Google Scholar 

  37. Ando, Y., Murai, J., Miyashita, T. & Miyazaki, T. Spin dependent tunneling in 80NiFe/LB film with ferrocene and tris(bipyridine)ruthenium derivatives Co junctions. Thin Solid Films 331, 158–164 (1998).

    Article  CAS  Google Scholar 

  38. Wang, T. X. et al. Magnetic/nonmagnetic/magnetic tunnel junction based on hybrid organic Langmuir-Blodgett-films. Appl. Phys. Lett. 88, 242505 (2006).

    Article  Google Scholar 

  39. Shim, J. H. et al. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 100, 226603 (2008).

    Article  CAS  Google Scholar 

  40. Jiang, J. S., Pearson, J. E. & Bader, S. D. Absence of spin transport in the organic semiconductor Alq3 . Phys. Rev. B 77, 035303 (2008).

    Article  Google Scholar 

  41. Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).

    Article  CAS  Google Scholar 

  42. Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Mater. 8, 115–119 (2009).

    Article  CAS  Google Scholar 

  43. Drew, A. J. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nature Mater. 8, 109–114 (2009).

    Article  CAS  Google Scholar 

  44. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  45. Motsnyi, V. F. et al. Optical investigation of electrical spin injection into semiconductors. Phys. Rev. B 68, 245319 (2003).

    Article  Google Scholar 

  46. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  47. Bergenti, I. et al. Spin polarised electrodes for organic light emitting diodes. Org. Electron. 5, 309–314 (2004).

    Article  CAS  Google Scholar 

  48. Salis, G., Alvarado, S. F., Tschudy, M., Brunschwiler, T. & Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys. Rev. B 70, 085203 (2004).

    Article  Google Scholar 

  49. Davis, A. H. & Bussmann, K. Organic luminescent devices and magnetoelectronics. J. Appl. Phys. 93, 7358–7360 (2003).

    Article  CAS  Google Scholar 

  50. McCamey, D. R. et al. Spin Rabi flopping in the photocurrent of a polymer light-emitting diode. Nature Mater. 7, 723–728 (2008).

    Article  CAS  Google Scholar 

  51. Zhan, Y. Q., Bergenti, I., Hueso, L. E. & Dediu, V. Alignment of energy levels at the Alq3/La0.7Sr0.3MnO3 interface for organic spintronic devices. Phys. Rev. B 76, 045406 (2007).

    Article  Google Scholar 

  52. Zhan, Y. Q. et al. Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices. Phys. Rev. B 78, 045208 (2008).

    Article  Google Scholar 

  53. Zhan, Y. Q. et al. The role of aluminum oxide buffer layer in organic spin-valves performance. Appl. Phys. Lett. 94, 053301 (2009).

    Article  Google Scholar 

  54. Tiba, M. V., de Jonge, W. J. M., Koopmans, B. & Jonkman, H. T. Morphology and electronic properties of the pentacene on cobalt interface. J. Appl. Phys. 100, 093707 (2006).

    Article  Google Scholar 

  55. Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Energy level alignment symmetry at Co/pentacene/Co interfaces. J. Appl. Phys. 100, 093714 (2006).

    Article  Google Scholar 

  56. Grobosch, M., Dorr, K., Gangineni, R. B. & Knupfer, M. Energy level alignment and injection barriers at spin injection contacts between La0.7Sr0.3MnO3 and organic semiconductors. Appl. Phys. Lett. 92, 023302 (2008).

    Article  Google Scholar 

  57. Emberly, E. G. & Kirczenow, G. Molecular spintronics: spin-dependent electron transport in molecular wires. Chem. Phys. 281, 311–324 (2002).

    Article  CAS  Google Scholar 

  58. Pati, R., Senapati, L., Ajayan, P. M. & Nayak, S. K. First-principles calculations of spin-polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B 68, 100407 (2003).

    Article  Google Scholar 

  59. Waldron, D., Haney, P., Larade, B., MacDonald, A. & Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006).

    Article  Google Scholar 

  60. Ren, J. F., Fu, J. Y., Liu, D. S., Mei, L. M. & Xie, S. J. Spin polarized injection and transport in organic polymers. Synth. Met. 155, 611–614 (2005).

    Article  CAS  Google Scholar 

  61. Ruden, P. P. & Smith, D. L. Theory of spin injection into conjugated organic semiconductors. J. Appl. Phys. 95, 4898–4904 (2004).

    Article  CAS  Google Scholar 

  62. Wei, J. H., Xie, S. J., Mei, L. M., Berakdar, J. & Yan, W. Conductance switching, hysteresis, and magnetoresistance in organic semiconductors. Org. Electron. 8, 487–497 (2007).

    Article  CAS  Google Scholar 

  63. Xie, S. J., Ahn, K. H., Smith, D. L., Bishop, A. R. & Saxena, A. Ground-state properties of ferromagnetic metal/conjugated polymer interfaces. Phys. Rev. B 67, 125202 (2003).

    Article  Google Scholar 

  64. Bobbert, P. A., Wagemans, W., van Oost, F. W. A., Koopmans, B. & Wohlgenannt, M. Theory for spin diffusion in disordered organic semiconductors. Phys. Rev. Lett. 102, 156604 (2009).

    Article  CAS  Google Scholar 

  65. Francis, T. L., Mermer, O., Veeraraghavan, G. & Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 6, 185 (2004).

    Article  Google Scholar 

  66. Nguyen, T. D., Sheng, Y. G., Rybicki, J., Veeraraghavan, G. & Wohlgenannt, M. Magnetoresistance in pi-conjugated organic sandwich devices with varying hyperfine and spin-orbit coupling strengths, and varying dopant concentrations. J. Mater. Chem. 17, 1995–2001 (2007).

    Article  CAS  Google Scholar 

  67. Bobbert, P. A., Nguyen, T. D., van Oost, F. W. A., Koopmans, B. & Wohlgenannt, M. Bipolaron mechanism for organic magnetoresistance. Phys. Rev. Lett. 99, 216801 (2007).

    Article  CAS  Google Scholar 

  68. Liu, Y. et al. Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures. Phys. Rev. B 79, 075312 (2009).

    Article  Google Scholar 

  69. Majumdar, S. et al. Application of regioregular polythiophene in spintronic devices: Effect of interface. Appl. Phys. Lett. 89, 122114 (2006).

    Article  Google Scholar 

  70. Krinichnyi, V. I. 2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers. Synth. Met. 108, 173–222 (2000).

    Article  CAS  Google Scholar 

  71. Yang, C. G., Ehrenfreund, E. & Vardeny, Z. V. Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. Phys. Rev. Lett. 99, 157401 (2007).

    Article  CAS  Google Scholar 

  72. Ikegami, T. et al. Planar-type spin valves based on low-molecular-weight organic materials with La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 92, 153304 (2008).

    Article  Google Scholar 

  73. Hueso, L. E., Bergenti, I., Riminucci, A., Zhan, Y. Q. & Dediu, V. Multipurpose magnetic organic hybrid devices. Adv. Mater. 19, 2639–2642 (2007).

    Article  CAS  Google Scholar 

  74. Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452–1463 (2007).

    Article  CAS  Google Scholar 

  75. Taliani, C. et al. Organic-inorganic hybrid spin-valve: A novel approach to spintronics. Phase Transit. 75, 1049–1058 (2002).

    Article  CAS  Google Scholar 

  76. Pramanik, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature. Nanotech. 2, 216–219 (2007).

    Article  CAS  Google Scholar 

  77. Shimada, T. et al. TI - Magnetotransport properties of Fe/pentacene/Co:TiO2 junctions with Fe top contact electrodes prepared by thermal evaporation and pulsed laser deposition. Jpn. J. Appl. Phys. 47, 1184–1187 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from EU-FP6-STRP 033370 OFSPIN and Organic Spintronics Srl for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Alek Dediu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dediu, V., Hueso, L., Bergenti, I. et al. Spin routes in organic semiconductors. Nature Mater 8, 707–716 (2009). https://doi.org/10.1038/nmat2510

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing