Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of an acoustic magnifying hyperlens

Abstract

Acoustic metamaterials can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission1,2,3,4,5,6,7,8,9,10,11,12,13,14. Recent theories suggested that imaging below the diffraction limit using passive elements can be realized by acoustic superlenses or magnifying hyperlenses15,16. These could markedly enhance the capabilities in underwater sonar sensing, medical ultrasound imaging and non-destructive materials testing. However, these proposed approaches suffer narrow working frequency bands and significant resonance-induced loss, which hinders them from successful experimental realization. Here, we report the experimental demonstration of an acoustic hyperlens that magnifies subwavelength objects by gradually converting evanescent components into propagating waves. The fabricated acoustic hyperlens relies on straightforward cutoff-free propagation and achieves deep-subwavelength resolution with low loss over a broad frequency bandwidth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acoustic hyperlens.
Figure 2: Experimental magnifying imaging of a dual-source sub-diffraction-limited object at 6.6 kHz.
Figure 3: Hyperlens imaging at 6.6 kHz.
Figure 4: The broadband performance of the acoustic hyperlens.
Figure 5: Hyperlens equi-frequency contour.

Similar content being viewed by others

References

  1. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2001).

    Article  Google Scholar 

  2. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    Article  CAS  Google Scholar 

  3. Christensen, J., Fernandez-Dominguez, A. I., de Leon-Perez, F., Martin-Moreno, L. & Garcia-Vidal, F. J. Collimation of sound assisted by acoustic surface waves. Nature Phys. 3, 851–852 (2007).

    Article  CAS  Google Scholar 

  4. Christensen, J., Huidobro, P. A., Martin-Moreno, L. & Garcia-Vidal, F. J. Confining and slowing airborne sound with a corrugated metawire. Appl. Phys. Lett. 93, 083502 (2008).

    Article  Google Scholar 

  5. de Rosny, J. & Fink, M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002).

    Article  CAS  Google Scholar 

  6. Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275, 749–789 (2007).

    Article  Google Scholar 

  7. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New. J. Phys. 8, 248 (2006).

    Article  Google Scholar 

  8. Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).

    Article  Google Scholar 

  9. Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008).

    Article  Google Scholar 

  10. Farhat, M. et al. A homogenization route towards square cylindrical acoustic cloaks. New J. Phys. 10, 115030 (2008).

    Article  Google Scholar 

  11. Torrent, D. & Sánchez-Dehesa, J. Acoustic cloaking in two dimensions: A feasible approach. New J. Phys. 10, 063015 (2008).

    Article  Google Scholar 

  12. Norris, A. N. Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009).

    Article  Google Scholar 

  13. Estrada, H. et al. Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101, 084302 (2008).

    Article  Google Scholar 

  14. Lu, M. et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys. Rev. Lett. 99, 174301 (2007).

    Article  Google Scholar 

  15. Guenneau, S., Movchan, A., Pétursson, G. & Ramakrishna, S. A. Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9, 399 (2007).

    Article  Google Scholar 

  16. Ao, X. & Chan, C. T. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601(R) (2008).

    Article  Google Scholar 

  17. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  18. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    CAS  Google Scholar 

  19. Ikonen, P., Simovski, C. R., Tretyakov, S., Belov, P. & Hao, Y. Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. 91, 104102 (2007).

    Article  Google Scholar 

  20. Shvets, G., Trendafilov, S., Pendry, J. B. & Sarychev, A. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007).

    Article  CAS  Google Scholar 

  21. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

    CAS  Google Scholar 

  22. Sukhovich, A., Jing, L. & Page, J. H. Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008).

    Article  Google Scholar 

  23. Sukhovich, A. et al. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009).

    Article  CAS  Google Scholar 

  24. He, Z., Cai, F., Ding, Y. & Liu, Z. Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Appl. Phys. Lett. 93, 233503 (2008).

    Article  Google Scholar 

  25. Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2002).

    Article  CAS  Google Scholar 

  26. Yang, S. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  Google Scholar 

  27. Ke, M. et al. Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. 142, 177–180 (2007).

    Article  CAS  Google Scholar 

  28. Zhang, S., Yin, L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

    Article  Google Scholar 

  29. Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

    Article  CAS  Google Scholar 

  30. Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    Article  CAS  Google Scholar 

  31. Torrent, D. & Sánchez-Dehesa, J. Anisotropic mass density by two-dimensional acoustic metamaterials. New J. Phys. 10, 023004 (2008).

    Article  Google Scholar 

  32. Kafesaki, M. & Economou, E. N. Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 60, 11993 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Office of Naval Research (grant number N00014-07-1-0626). L.F. acknowledges a fellowship from the National Science Foundation Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

J.L. developed the device concept and design. L.F. and J.L. fabricated the device. L.F. and X.Y. constructed the experimental set-up. J.L. and L.F. conducted the theoretical simulations and experiments. X.Z., G.B. and J.L. guided the theoretical and experimental investigations. J.L., L.F., G.B. and X.Z. analysed data and wrote the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Supplementary information

Supplementary Information

Supplementary Information (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Fok, L., Yin, X. et al. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater 8, 931–934 (2009). https://doi.org/10.1038/nmat2561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing