Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical investigation of the P2–NaxCoO2 phase diagram

Subjects

Abstract

Sodium layered oxides NaxCoO2 form one of the most fascinating low-dimensional and strongly correlated systems; in particular P2–NaxCoO2 exhibits various single-phase domains with different Na+/vacancy patterns depending on the sodium concentration. Here we used sodium batteries to clearly depict the P2–NaxCoO2 phase diagram for x≥0.50. By coupling the electrochemical process with an in situ X-ray diffraction experiment, we identified the succession of single-phase or two-phase domains appearing on sodium intercalation with a rather good accuracy compared with previous studies. We reported new single-phase domains and we underlined the thermal instability of some ordered phases from an electrochemical study at various temperatures. As each phase is characterized by the position of its Fermi level versus the Na+/Na couple, we showed that the synthesis of each material, even in large amounts, can be carried out electrochemically. The physical properties of the as-prepared Na1/2CoO2 and Na2/3CoO2 ordered phases were characterized and compared. Electrochemical processes are confirmed to be an accurate route to precisely investigate in a continuous way such a complex system and provide a new way to synthesize materials with a very narrow existence range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galvanostatic cycling curve of a Na//P2–NaxCoO2 battery giving an overview of the phase diagram.
Figure 2: Synergy between electrochemistry and in situ XRD through sodium ion intercalation in P2–NaxCoO2.
Figure 3: Evolution of the chex. parameter as a function of the sodium content.
Figure 4: Overview of single-phase domain thermal stability.
Figure 5: Potentiostatic route to obtain P2–NaxCoO2 material with a given composition.

Similar content being viewed by others

References

  1. Dodero, M. & Déportes, C. Sur la préparation de ferrites, nickelites et cobaltites alcalins par électrolyse ignée. C. R. Acad. Sci; Paris 242, 2939–2941 (1956).

    CAS  Google Scholar 

  2. Déportes, C. Sur la préparation anodique des ferrites, nickelites et cobaltites alcalins par électrolyse ignée et l’étude de leurs propriétés. PhD Thesis, Univ. Grenoble (1958).

  3. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Physica B+C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  4. Jansen, M. & Hoppe, R. Neue Oxocobaltate. Naturwissenschaften 59, 215 (1972).

    Article  CAS  Google Scholar 

  5. Jansen, M. & Hoppe, R. Notiz zur kenntnis der oxocobaltate des natriums. Z. Anorg. Allg. Chem. 408, 104–106 (1974).

    Article  CAS  Google Scholar 

  6. Fouassier, C., Matejka, G., Reau, J-M. & Hagenmuller, P. Sur de nouveaux bronzes oxygénés de formule NaxCoO2 (x<1). Le système cobalt-oxygène-sodium. J. Solid State Chem. 6, 532–537 (1973).

    Article  CAS  Google Scholar 

  7. Braconnier, J-J., Delmas, C., Fouassier, C. & Hagenmuller, P. Comportement éléctrochimique des phases NaxCoO2 . Mater. Res. Bull. 15, 1797–1804 (1980).

    Article  CAS  Google Scholar 

  8. Shaklette, L. W., Jow, T. R. & Townsend, L. Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135, 2669–2674 (1988).

    Article  Google Scholar 

  9. Molenda, J., Delmas, C. & Hagenmuller, P. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ion. 9–10, 431–435 (1983).

    Article  Google Scholar 

  10. Molenda, J., Delmas, C., Dordor, P. & Stoklosa, A. Transport properties of NaxCoO2−y . Solid State Ion. 12, 473–477 (1984).

    Article  CAS  Google Scholar 

  11. Terasaki, I., Sasago, Y & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).

    Article  CAS  Google Scholar 

  12. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  CAS  Google Scholar 

  13. Lee, M. et al. Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nature Mater. 5, 537–540 (2006).

    Article  CAS  Google Scholar 

  14. Lee, M. et al. Enhancement of the thermopower in NaxCoO2 in the large-x regime (x≥0.75). Physica B 403, 1564–1568 (2008).

    Article  CAS  Google Scholar 

  15. Zhang, P., Capaz, R., Cohen, M. & Louie, S. Theory of sodium ordering in NaxCoO2 . Phys. Rev. B 71, 153102 (2005).

    Article  Google Scholar 

  16. Roger, M. et al. Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 445, 631–634 (2007).

    Article  CAS  Google Scholar 

  17. Meng, Y., Hinuma, Y. & Ceder, G. An investigation of the sodium patterning in NaxCoO2 (0.5<x<1) by density functional theory methods. J. Chem. Phys. 128, 104708 (2008).

    Article  Google Scholar 

  18. Blangero, M. et al. First experimental evidence of potassium ordering in layered K4Co7O14 . Inorg. Chem. 44, 9299–9304 (2005).

    Article  CAS  Google Scholar 

  19. Carlier, D., Van der Ven, A., Delmas, C. & Ceder, G. First-principles investigation of phase stability in the O2–LiCoO2 system. Chem. Mater. 15, 2651–2660 (2003).

    Article  CAS  Google Scholar 

  20. Huang, Q. et al. Low temperature phase transitions and crystal structure of Na0.5CoO2 . J. Phys. Condens. Matter 16, 5803–5814 (2004).

    Article  CAS  Google Scholar 

  21. Mukhamedshin, I., Alloul, H., Collin, G. & Blanchard, N. Na NMR evidence for charge order and anomalous magnetism in NaxCoO2 . Phys. Rev. Lett. 93, 167601 (2004).

    Article  CAS  Google Scholar 

  22. Alloul, H., Mukhamedshin, I., Collin, G. & Blanchard, N. Na atomic order, Co charge disproportionation and magnetism in NaxCoO2 for large Na contents. Europhys. Lett. 82, 17002 (2008).

    Article  Google Scholar 

  23. Julien, M-H. et al. Electronic texture of the thermoelectric oxide Na0.75CoO2 . Phys. Rev. Lett. 100, 096405 (2008).

    Article  Google Scholar 

  24. Platova, T., Mukhamedshin, I., Alloul, H., Dooglav, A. & Collin, G. NQR and X-ray investigation of the structure of Na2/3CoO2 compound. Phys. Rev. B 80, 224106 (2009).

    Article  Google Scholar 

  25. Huang, Q. et al. Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2 . Phys. Rev. B 70, 184110 (2004).

    Article  Google Scholar 

  26. Chou, F. et al. Thermodynamic and transport measurements of superconducting Na0.3CoO2·1.3H2O single crystals prepared by electrochemical deintercalation. Phys. Rev. Lett. 92, 157004 (2004).

    Article  CAS  Google Scholar 

  27. Chou, F., Abel, E., Cho, J. & Lee, Y. Electrochemical de-intercalation, oxygen non-stoichiometry, and crystal growth of NaxCoO2 . J. Phys. Chem. Solids 66, 155–160 (2005).

    Article  CAS  Google Scholar 

  28. Shu, G. et al. Searching for stable Na-ordered phases in single-crystal samples of γ-NaxCoO2 . Phys. Rev. B 76, 184115 (2007).

    Article  Google Scholar 

  29. Huang, F-T. et al. X-ray and electron diffraction studies of superlattices and long-range three-dimensional Na ordering in γ-NaxCoO2 (x=0.71 and 0.84). Phys. Rev. B 79, 014413 (2009).

    Article  Google Scholar 

  30. Mendels, P. et al. Cascade of bulk magnetic phase transitions in NaxCoO2 as studied by muon spin rotation. Phys. Rev. Lett. 94, 136403 (2005).

    Article  CAS  Google Scholar 

  31. Lang, G., Bobroff, J., Alloul, H., Collin, G. & Blanchard, N. Spin correlations and cobalt charge states: Phase diagram of sodium cobaltates. Phys. Rev. B 78, 155116 (2008).

    Article  Google Scholar 

  32. Mendiboure, A., Delmas, C. & Hagenmuller, P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J. Solid State Chem. 57, 323–331 (1985).

    Article  CAS  Google Scholar 

  33. Saadoune, I., Maazaz, A., Ménétrier, M. & Delmas, C. On the NaxNi0.6Co0.4O2 system: Physical and electrochemical studies. J. Solid State Chem. 122, 111–117 (1996).

    Article  CAS  Google Scholar 

  34. Croguennec, L., Pouillerie, C. & Delmas, C. NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: Structural modifications. J. Electrochem. Soc. 147, 1314–1321 (2000).

    Article  CAS  Google Scholar 

  35. Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    Article  CAS  Google Scholar 

  36. Hinuma, Y., Meng, Y. & Ceder, G. Temperature-concentration phase diagram of P2–NaxCoO2 from first-principles calculations. Phys. Rev. B 77, 224111 (2008).

    Article  Google Scholar 

  37. Zandbergen, H., Foo, M., Xu, Q., Kumar, V. & Cava, R.J. Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 70, 024101 (2004).

    Article  Google Scholar 

  38. Huang, Q., Lynn, J., Toby, B., Foo, M-L. & Cava, R. J. Characterization of the structural transition in Na0.75CoO2 . J. Phys. Condens. Matter 17, 1831–1840 (2005).

    Article  CAS  Google Scholar 

  39. Igarashi, D., Miyazaki, Y., Kajitani, T. & Yubuta, K. Disorder–order transitions in NaxCoO2(x0.58). Phys. Rev. B 78, 184112 (2008).

    Article  Google Scholar 

  40. Balsys, R. & Davis, R. Refinement of the structure of Na0.74CoO2 using neutron powder diffraction. Solid State Ion. 93, 279–282 (1997).

    Article  CAS  Google Scholar 

  41. Foo, M. et al. Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2 . Phys. Rev. Lett. 92, 247001 (2004).

    Article  Google Scholar 

  42. Yang, H. X. et al. Phase separation, effects of magnetic field and high pressure on charge ordering in γ-Na0.5CoO2 . Mater. Chem. Phys. 94, 119–124 (2005).

    Article  CAS  Google Scholar 

  43. Gasparovic, G. et al. Neutron scattering study of novel magnetic order in Na0.5CoO2 . Phys. Rev. Lett. 96, 046403 (2006).

    Article  CAS  Google Scholar 

  44. Dordor, P., Marquestaut, E. & Villeneuve, G. Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K. Rev. Phys. Appl. 15, 1607–1612 (1980).

    Article  CAS  Google Scholar 

  45. Kaurav, N., Wu, K. K., Kuo, Y. K., Shu, G. J. & Chou, F. C. Seebeck coefficient of NaxCoO2: Measurements and a narrow-band model. Phys. Rev. B 79, 075105 (2009).

    Article  Google Scholar 

  46. Igarashi, D., Miyazaki, Y., Yubuta, K. & Kajitani, T. Precise control of Na content in the layered cobaltate γ-NaxCoO2 . J. Electron. Mater. 39, 1669–1673 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Pechev for XRD measurement technical expertise, M. Pollet for fruitful discussions and S. Meng, M-H. Julien and B. J. Hwang for scientific exchanges. Financial support was provided by CNRS, ANR through the OCTE programme and Région Aquitaine. CEA is thanked for the scholarship to R.B.

Author information

Authors and Affiliations

Authors

Contributions

D.C. and C.D. planned the research. R.B. and D.C. carried out the experimental work. R.B., D.C. and C.D. analysed the data, and wrote and revised the manuscript.

Corresponding author

Correspondence to D. Carlier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Mater 10, 74–80 (2011). https://doi.org/10.1038/nmat2920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing