Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polymer nanosieve membranes for CO2-capture applications

Abstract

Microporous organic polymers (MOPs) are of potential significance for gas storage1,2,3, gas separation4 and low-dielectric applications5. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO2 separation performance, even under polymer plasticization conditions such as CO2/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO2 sorption with superior affinity in gas mixtures, and selective CO2 transport by presorbed CO2 molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO2 capture processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration and computer modelling structures of PIM-1 and TZPIM.
Figure 2: Relationship between CO2 permeability and CO2/N2 selectivity of TZPIMs and PIM-1.
Figure 3: Difference in single and mixed gas selectivity in TZPIM as a function of CO2 partial pressure.
Figure 4: Gas adsorption isotherms for PIM-1 and TZPIM-3.

Similar content being viewed by others

References

  1. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  2. Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 21, 1291–1295 (2009).

    Article  CAS  Google Scholar 

  3. McKeown, N. B. et al. Towards polymer-based hydrogen storage materials: Engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew. Chem. Int. Ed. 45, 1804–1807 (2006).

    Article  CAS  Google Scholar 

  4. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  Google Scholar 

  5. Long, T. M. & Swager, T. M. Molecular design of free volume as a route to low-k dielectric materials. J. Am. Chem. Soc. 125, 14113–14119 (2005).

    Article  Google Scholar 

  6. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 817–821 (2002).

    Article  Google Scholar 

  7. Schüth, F. & Schmidt, W. Microporous and mesoporous materials. Adv. Mater. 14, 629–638 (2002).

    Article  Google Scholar 

  8. Kitagawa, S., Kitaura, R. & Noro, S-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  9. Nagai, K., Masuda, T., Nakagawa, T., Freeman, B. D. & Pinnau, I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 26, 721–798 (2001).

    Article  CAS  Google Scholar 

  10. Park, H. B., Han, S. H., Jung, C. H., Lee, Y. M. & Hill, A. J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. 359, 11–24 (2010).

    Article  CAS  Google Scholar 

  11. Budd, P. M., McKeown, N. B. & Fritsch, D. Polymers of intrinsic microporosity (PIMs): High free volume polymers for membrane applications. Macromol. Sym. 245, 403–405 (2006).

    Article  Google Scholar 

  12. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  13. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    Article  CAS  Google Scholar 

  14. Budd, P. M. et al. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005).

    Article  CAS  Google Scholar 

  15. Du, N. Y., Robertson, G. P. & Guiver, M. D. Polymers of intrinsic microporosity derived from novel disulfone-based monomers. Macromolecules 42, 6023–6030 (2009).

    Article  CAS  Google Scholar 

  16. Du, N. Y., Robertson, G. P., Song, J. S. & Guiver, M. D. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 42, 6038–6043 (2009).

    Article  CAS  Google Scholar 

  17. Du, N. Y. et al. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 41, 9656–9662 (2008).

    Article  CAS  Google Scholar 

  18. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  19. Lin, H. & Freeman, B. D. Materials selection guideline for membranes that remove CO2 from gas mixtures. J. Mol. Struct. 739, 57–74 (2005).

    Article  CAS  Google Scholar 

  20. Lin, H. & Freeman, B. D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J. Membr. Sci. 239, 105–117 (2004).

    Article  CAS  Google Scholar 

  21. Vogiatzis, K., Mavrandonakis, A., Klopper, W. & Froudakis, G. E. Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10, 374–383 (2009).

    Article  CAS  Google Scholar 

  22. Gothelf, K. V. & Jørgensen, K. A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev. 98, 863–910 (1998).

    Article  CAS  Google Scholar 

  23. Huisgen, R., Szeimies, G. & Möbius, L. 1,3-Dipolar cycloadditions. XXXII. Kinetics of the addition of organic azides to carbon-carbon multiple bonds. Chem. Ber. 100, 2494–2507 (1967).

    Article  CAS  Google Scholar 

  24. Binder, W. H. & Sachsenhofer, R. Click chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007).

    Article  CAS  Google Scholar 

  25. Guiver, M. D., Robertson, G. P., Yoshikawa, M. & Tam, C. M. Functionalized polysulfones: Methods for chemical modification and membrane applications. ACS Symp. Ser. 744, 137–161 (2000) Chapter 10.

    Article  CAS  Google Scholar 

  26. Guiver, M. D. & Robertson, G. P. US Patent 5,475,065 (1995).

  27. Tsarevsky, N. V., Bernaerts, K. V., Dufour, B., Du Prez, F. E. & Matyjaszewski, K. Well-defined (co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (co)polymerization of acrylonitrile and click chemistry-type postpolymerization modification. Macromolecules 37, 9308–9313 (2004).

    Article  CAS  Google Scholar 

  28. Pinnau, I., Casillas, C. G., Morisato, A. & Freeman, B. D. Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Polym. Phys. 34, 2613–2621 (1996).

    Article  CAS  Google Scholar 

  29. Thomas, S., Pinnau, I., Du, N. & Guiver, M. D. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microprous spirobisindane polymer. J. Membr. Sci. 338, 1–4 (2009).

    Article  CAS  Google Scholar 

  30. Merkel, T., Lin, H., Wei, X. & Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 359, 126–139 (2010).

    Article  CAS  Google Scholar 

  31. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. & Srivastava, R. D. Advances in CO2 capture technology—the US Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2, 9–20 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NRCC No. 52847. The authors acknowledge partial support from the Climate Change Technology and Innovation Initiative, Greenhouse Gas project (CCTII, GHG), Natural Resources Canada (NRCan) and from Vaperma. H.B.P. and M.D.G. acknowledge support by the WCU (World Class University) programme through the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology (No. R31-2008-000-10092-0). The authors are very grateful to F. Toll of the National Research Council for the BET absorption measurements.

Author information

Authors and Affiliations

Authors

Contributions

N.D. experimental design, synthesis and gas permeation experiments, data analysis, manuscript writing; H.B.P. computer modeling, gas permeation and gas adsorption experiments, data analysis, manuscript writing; G.P.R. NMR and TGA-MS experiments, data analysis; M.M.D-C. gas permeation experiments, data analysis; T.V. industrial application input; L.S. assisted in the synthetic experiments; M.D.G. project idea, direction and supervision, experimental design, data analysis, manuscript writing.

Corresponding author

Correspondence to Michael D. Guiver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, N., Park, H., Robertson, G. et al. Polymer nanosieve membranes for CO2-capture applications. Nature Mater 10, 372–375 (2011). https://doi.org/10.1038/nmat2989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing