Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal energy-level alignment of molecules on metal oxides

This article has been updated

Abstract

Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic properties can be tuned to enable charge exchange with a wide variety of organic molecules. Although it is known that charge exchange relies on the alignment of donor and acceptor energy levels, the mechanism for level alignment remains under debate. Here, we conclusively establish the principle of energy alignment between oxides and molecules. We observe a universal energy-alignment trend for a set of transition-metal oxides—representing a broad diversity in electronic properties—with several organic semiconductors. The trend demonstrates that, despite the variance in their electronic properties, oxide energy alignment is governed by one driving force: electron-chemical-potential equilibration. Using a combination of simple thermodynamics, electrostatics and Fermi statistics we derive a mathematical relation that describes the alignment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy levels at oxide/molecule interfaces.
Figure 2: Universal energy-level alignment trends.
Figure 3: Valence bands of transition-metal oxide classes.
Figure 4: Energy levels of transition-metal oxides and organic semiconductors.
Figure 5: Origin of energy-level-alignment trend.
Figure 6: Tuning energy alignment through electron chemical potential.

Change history

  • 01 December 2011

    In the version of this Article originally published online, equation (2) was incorrect. These errors have been corrected in all versions of the Article.

  • 06 December 2011

    In the version of this Article originally published online, equation (2) was incorrect and the parameter definitions incomplete. These errors have been corrected in all versions of the Article.

References

  1. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  Google Scholar 

  2. Gibson, E. A. et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew. Chem. Int. Ed. 48, 4402–4405 (2009).

    Article  CAS  Google Scholar 

  3. Nattestad, A. et al. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Mater. 9, 31–35 (2010).

    Article  CAS  Google Scholar 

  4. Kabra, D., Lu, L. P., Song, M. H., Snaith, H. J. & Friend, R. H. Efficient single-layer polymer light-emitting diodes. Adv. Mater. 22, 3194–3198 (2010).

    Article  CAS  Google Scholar 

  5. Meyer, J., Khalandovsky, R., Gorrn, P. & Kahn, A. MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23, 70–73 (2011).

    Article  CAS  Google Scholar 

  6. Qiu, C. F., Xie, Z. L., Chen, H. Y., Wong, M. & Kwok, H. S. Comparative study of metal or oxide capped indium-tin oxide anodes for organic light-emitting diodes. J. Appl. Phys. 93, 3253–3258 (2003).

    Article  CAS  Google Scholar 

  7. Roy, S. C., Varghese, O. K., Paulose, M. & Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259–1278 (2010).

    Article  CAS  Google Scholar 

  8. Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010).

    Article  CAS  Google Scholar 

  9. Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    Article  CAS  Google Scholar 

  10. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  11. Tokito, S., Noda, K. & Taga, Y. Metal oxides as a hole-injecting layer for an organic electroluminescent device. J. Phys. D 29, 2750–2753 (1996).

    Article  CAS  Google Scholar 

  12. Tang, H., Li, F. & Shinar, J. Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes. Appl. Phys. Lett. 71, 2560–2562 (1997).

    Article  CAS  Google Scholar 

  13. Chu, C. W., Li, S. H., Chen, C. W., Shrotriya, V. & Yang, Y. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl. Phys. Lett. 87, 193508 (2005).

    Article  Google Scholar 

  14. Wang, Z. B., Helander, M. G., Greiner, M. T., Qiu, J. & Lu, Z. H. Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides. Phys. Rev. B 80, 235325 (2009).

    Article  Google Scholar 

  15. Murdoch, G. B., Greiner, M., Helander, M. G., Wang, Z. B. & Lu, Z. H. A comparison of CuO and Cu2O hole-injection layers for low voltage organic devices. Appl. Phys. Lett. 93, 083309 (2008).

    Article  Google Scholar 

  16. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1996).

    Google Scholar 

  17. Ishii, H. & Seki, K. Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. IEEE Trans. Electron Devices 44, 1295–1301 (1997).

    Article  CAS  Google Scholar 

  18. Hill, I. G., Rajagopal, A., Kahn, A. & Hu, Y. Molecular level alignment at organic semiconductor–metal interfaces. Appl. Phys. Lett. 73, 662–664 (1998).

    Article  CAS  Google Scholar 

  19. Vazquez, H., Flores, F. & Kahn, A. Induced density of states model for weakly-interacting organic semiconductor interfaces. Org. Electron. 8, 241–248 (2007).

    Article  CAS  Google Scholar 

  20. Vazquez, H., Gao, W., Flores, F. & Kahn, A. Energy level alignment at organic heterojunctions: Role of the charge neutrality level. Phys. Rev. B 71, 041306 (2005).

    Article  Google Scholar 

  21. Crispin, X. et al. Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124, 8131–8141 (2002).

    Article  CAS  Google Scholar 

  22. Vázquez, H., Dappe, Y. J., Ortega, J. & Flores, F. Energy level alignment at metal/organic semiconductor interfaces: Pillow effect, induced density of interface states, and charge neutrality level. J. Chem. Phys. 126, 144703 (2007).

    Article  Google Scholar 

  23. Tengstedt, C. et al. Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 88, 053502 (2006).

    Article  Google Scholar 

  24. Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

    Article  CAS  Google Scholar 

  25. Sessolo, M. & Bolink, H. J. Hybrid organic–inorganic light-emitting diodes. Adv. Mater. 23, 1829–1845 (2011).

    Article  CAS  Google Scholar 

  26. Kroger, M. et al. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301 (2009).

    Article  Google Scholar 

  27. Sessolo, M. H. B. Hybrid organic–inorganic light emitting diodes. Adv. Mater. 23, 1829–1845 (2011).

    Article  CAS  Google Scholar 

  28. Lee, H. et al. The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis(1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl- 4, 4′-diamine interfaces. Appl. Phys. Lett. 93, 043308 (2008).

    Article  Google Scholar 

  29. Zimmermann, R. et al. Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency. J. Phys.:Condes. Matter. 11, 1657–1682 (1999).

    CAS  Google Scholar 

  30. Kanno, H., Sun, Y. & Forrest, S. R. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices. Appl. Phys. Lett. 86, 263502 (2005).

    Article  Google Scholar 

  31. Scanlon, D. O., Walsh, A., Morgan, B. J. & Watson, G. W. An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008).

    Article  CAS  Google Scholar 

  32. Hüfner, S. Electronic structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 43, 183–356 (1994).

    Article  Google Scholar 

  33. Van de Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003).

    Article  CAS  Google Scholar 

  34. Sze, S. M. Physics of Semiconductor Devices 2 edn (Wiley, 1981).

    Google Scholar 

Download references

Acknowledgements

We thank J. Nogami, C. Mims and G. Walker for their helpful advice. We also thank D. Grozea for his technical assistance, and E. Nolan for his help editing the manuscript. We would also like to thank R. D’Souza-Greiner for proofreading the manuscript. The financial support for this research was provided by the NRC-NSERC-BDC Nanotechnology Initiative (NNBPJ364261-07). Z-H.L. is the Canada Research Chair in Organic Optoelectronics, Tier I.

Author information

Authors and Affiliations

Authors

Contributions

M.T.G. planned the study, carried out XPS and UPS measurements and wrote the manuscript. M.G.H. assisted in XPS and UPS experiments, as well as method validation, and participated in discussion. W-M.T. prepared samples and assisted with atomic force microscopy measurements. Z-B.W. and J.Q. took part in discussion and assisted in sample preparation. Z-H.L. supervised the research, and gave direction in writing the manuscript.

Corresponding author

Correspondence to Mark T. Greiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1571 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, M., Helander, M., Tang, WM. et al. Universal energy-level alignment of molecules on metal oxides. Nature Mater 11, 76–81 (2012). https://doi.org/10.1038/nmat3159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing