Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Charged nanoparticles as supramolecular surfactants for controlling the growth and stability of microcrystals

This article has been updated

Abstract

Microcrystals of desired sizes are important in a range of processes and materials, including controlled drug release1,2, production of pharmaceutics and food3,4, bio-5 and photocatalysis6, thin-film solar cells7 and antibacterial fabrics8. The growth of microcrystals can be controlled by a variety of agents, such as multivalent ions9, charged small molecules10, mixed cationic–anionic surfactants11,12, polyelectrolytes13,14 and other polymers15, micropatterned self-assembled monolayers16,17, proteins18 and also biological organisms during biomineralization19,20. However, the chief limitation of current approaches is that the growth-modifying agents are typically specific to the crystalizing material. Here, we show that oppositely charged nanoparticles can function as universal surfactants that control the growth and stability of microcrystals of monovalent or multivalent inorganic salts, and of charged organic molecules. We also show that the solubility of the microcrystals can be further tuned by varying the thickness of the nanoparticle surfactant layers and by reinforcing these layers with dithiol crosslinks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NP surfactants control the growth of inorganic salt microcrystals.
Figure 2: The nature of the assembling structures depends on the ratio of NP and salt concentrations, χ=CNP/Csalt.
Figure 3: Time course of crystallization and crystal-size control.
Figure 4: Varying the thickness of the NP shell and controlling the microcrystals’ solubility.

Similar content being viewed by others

Change history

  • 20 January 2012

    In the version of this Letter originally published online, the name of the penultimate author was spelt incorrectly; it should have read Shuangbing Han. This error has been corrected in all versions of the Letter.

References

  1. Ai, H., Jones, S. A., de Villiers, M. M. & Lvov, Y. M. Nano-encapsulation of furosemide microcrystals for controlled drug release. J. Control. Release 86, 59–68 (2003).

    Article  CAS  Google Scholar 

  2. Qiu, X. P., Leporatti, S., Donath, E. & Mohwald, H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17, 5375–5380 (2001).

    Article  CAS  Google Scholar 

  3. Ek, R., Wormald, P., Ostelius, J., Iversen, T. & Nystrom, C. Crystallinity index of microcrystalline cellulose particles compressed into tablets. Int. J. Pharm. 125, 257–264 (1995).

    Article  CAS  Google Scholar 

  4. Bodmeier, R. Tableting of coated pellets. Eur. J. Pharm. Biopharm. 43, 1–8 (1997).

    Article  CAS  Google Scholar 

  5. Kreiner, M., Moore, B. D. & Parker, M. C. Enzyme-coated micro-crystals: A 1-step method for high activity biocatalyst preparation. Chem. Commun. 41, 1096–1097 (2001).

    Article  Google Scholar 

  6. Pradhan, A. R., Macnaughtan, M. A. & Raftery, D. Zeolite-coated optical microfibers for intrazeolite photocatalysis studied by in situ solid-state NMR. J. Am. Chem. Soc. 122, 404–405 (2000).

    Article  CAS  Google Scholar 

  7. Rech, B. et al. Microcrystalline silicon for large area thin film solar cells. Thin Solid Films 427, 157–165 (2003).

    Article  CAS  Google Scholar 

  8. Lee, G. S., Lee, Y. J., Ha, K. & Yoon, K. B. Preparation of flexible zeolite-tethering vegetable fibers. Adv. Mater. 13, 1491–1495 (2001).

    Article  CAS  Google Scholar 

  9. Kubota, N., Otosaka, H., Doki, N., Yokota, M. & Sato, A. Effect of lead(II) impurity on the growth of sodium chloride crystals. J. Cryst. Growth 220, 135–139 (2000).

    Article  CAS  Google Scholar 

  10. Mann, S., Didymus, J. M., Sanderson, N. P., Heywood, B. R. & Samper, E. J. A. Morphological influence of functionalized and non-functionalized- α,ω-dicarboxylates on calcite crystallization. J. Chem. Soc. Faraday Trans. 86, 1873–1880 (1990).

    Article  CAS  Google Scholar 

  11. Jing, S. Y. et al. Synthesis of octahedral Cu2O microcrystals assisted with mixed cationic/anionic surfactants. Mater. Lett. 61, 2281–2283 (2007).

    Article  CAS  Google Scholar 

  12. Tian, G. R., Sun, S. X., Song, X. Y., Zhao, W. & You, T. Cooperative role of dual surfactants in synthesis of single crystal BaMoO4 microcrystals. Mater. Technol. 24, 92–96 (2009).

    Article  CAS  Google Scholar 

  13. Xiao, J. J., Kan, A. T. & Tomson, M. B. Prediction of BaSO4 precipitation in the presence and absence of a polymeric inhibitor: Phosphino-polycarboxylic acid. Langmuir 17, 4668–4673 (2001).

    Article  CAS  Google Scholar 

  14. Oner, M. & Akyol, E. Inhibition of calcium oxalate monohydrate crystal growth using polyelectrolytes. J. Cryst. Growth 307, 137–144 (2007).

    Article  Google Scholar 

  15. Yang, J. H., Qi, L. M., Zhang, D. B., Ma, J. M. & Cheng, H. M. Dextran-controlled crystallization of silver microcrystals with novel morphologies. Cryst. Growth Des. 4, 1371–1375 (2004).

    Article  CAS  Google Scholar 

  16. Aizenberg, J., Black, A. J. & Whitesides, G. H. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. J. Am. Chem. Soc. 121, 4500–4509 (1999).

    Article  CAS  Google Scholar 

  17. Aizenberg, J., Black, A. J. & Whitesides, G. M. Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495–498 (1999).

    Article  CAS  Google Scholar 

  18. Yeh, Y. & Feeney, R. E. Antifreeze proteins: Structures and mechanisms of function. Chem. Rev. 96, 601–617 (1996).

    Article  CAS  Google Scholar 

  19. Lowenstam, H. A. Minerals formed by organisms. Science 211, 1126–1131 (1981).

    Article  CAS  Google Scholar 

  20. Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Edn. 31, 153–169 (1992).

    Article  Google Scholar 

  21. Gref, R. et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16, 215–233 (1995).

    Article  CAS  Google Scholar 

  22. Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003).

    Article  CAS  Google Scholar 

  23. Kalsin, A. M., Kowalczyk, B., Smoukov, S. K., Klajn, R. & Grzybowski, B. A. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 128, 15046–15047 (2006).

    Article  CAS  Google Scholar 

  24. Kalsin, A. M., Kowalczyk, B., Wesson, P., Paszewski, M. & Grzybowski, B. A. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations. J. Am. Chem. Soc. 129, 6664–6665 (2007).

    Article  CAS  Google Scholar 

  25. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  26. Kowalczyk, B. et al. Size selection during crystallization of oppositely charged nanoparticles. Chem. Eur. J. 15, 2032–2035 (2009).

    Article  CAS  Google Scholar 

  27. Templeton, A. C., Zamborini, F. P., Wuelfing, W. P. & Murray, R. W. Controlled and reversible formation of nanoparticle aggregates and films using Cu2+-carboxylate chemistry. Langmuir 16, 6682–6688 (2000).

    Article  CAS  Google Scholar 

  28. Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B. & Grzybowski, B. A. Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5, 530–536 (2011).

    Article  CAS  Google Scholar 

  29. Tretiakov, K. V. et al. Mechanism of the cooperative adsorption of oppositely charged nanoparticles. J. Phys. Chem. A 113, 3799–3803 (2009).

    Article  CAS  Google Scholar 

  30. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  31. Smoukov, S. K., Bishop, K. J. M., Kowalczyk, B., Kalsin, A. M. & Grzybowski, B. A. Electrostatically ‘patchy’ coatings via cooperative adsorption of charged nanoparticles. J. Am. Chem. Soc. 129, 15623–15630 (2007).

    Article  CAS  Google Scholar 

  32. Jones, F., Richmond, W. R. & Rohl, A. L. Molecular modeling of phosphonate molecules onto barium sulfate terraced surfaces. J. Phys. Chem. B 110, 7414–7424 (2006).

    Article  CAS  Google Scholar 

  33. Kowalczyk, B., Lagzi, I. & Grzybowski, B. A. ‘Nanoarmoured’ droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Non-equilibrium Energy Research Center, which is an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0000989.

Author information

Authors and Affiliations

Authors

Contributions

B.K. carried out the majority of experiments and imaging studies, and produced the figures; K.J.M.B. developed theoretical models; I.L. and D.W. helped with NP synthesis; Y.W. and S.H. collected and interpreted crystallographic data; B.A.G. conceived the project and wrote the paper.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalczyk, B., Bishop, K., Lagzi, I. et al. Charged nanoparticles as supramolecular surfactants for controlling the growth and stability of microcrystals. Nature Mater 11, 227–232 (2012). https://doi.org/10.1038/nmat3202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing