Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fractionalization of interstitials in curved colloidal crystals

Subjects

Abstract

Understanding the effect of curvature and topological frustration in crystals yields insights into the fragility of the ordered state. For instance, a one-dimensional crystal of identical charged particles can accommodate an extra particle (interstitial) if all the particle positions are readjusted, yet in a planar hexagonal crystal interstitials remain trapped between lattice sites and diffuse by hopping1,2,3. Using optical tweezers operated independently of three-dimensional imaging, we inserted interstitials in a lattice of similar colloidal particles sitting on flat or curved oil/glycerol interfaces, and imaged the ensuing dynamics. We find that, unlike in flat space, the curved crystals self-heal through a collective particle rearrangement that redistributes the increased density associated with the interstitial. This process can be interpreted in terms of the out-of-equilibrium interaction of topological defects with each other and with the underlying curvature. Our observations suggest the existence of particle fractionalization on curved surface crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Curved crystals and topological defects.
Figure 2: Interstitials in flat space and interstitial absorption by grain boundaries.
Figure 3: Interstitial fractionalization.

Similar content being viewed by others

References

  1. Chaikin, P. & Lubensky, T. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  2. Hirth, J. P. & Lothe, J. Theory of Dislocations (McGraw-Hill, 1968).

    Google Scholar 

  3. Nelson, D. R. Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, 2002).

    Google Scholar 

  4. Nelson, D. R. & Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. 48, 1085–1092 (1987).

    Article  CAS  Google Scholar 

  5. Pèrez-Garrido, A., Dodgson, M. & Moore, M. Influence of dislocations in Thomsons problem. Phys. Rev. B 56, 3640–3643 (1997).

    Article  Google Scholar 

  6. Bowick, M. J., Nelson, D. R. & Travesset, A. Interacting topological defects on frozen topographies. Phys. Rev. B 62, 8738–8751 (2000).

    Article  CAS  Google Scholar 

  7. Vitelli, V., Lucks, J. B. & Nelson, D. R. Crystallography on curved surfaces. Proc. Natl Acad. Sci. USA 103, 12323–12328 (2006).

    Article  CAS  Google Scholar 

  8. Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  CAS  Google Scholar 

  9. Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article  CAS  Google Scholar 

  10. Lipowsky, P., Bowick, M. J., Meinke, J. H., Nelson, D. R. & Bausch, A. R. Direct visualization of dislocation dynamics in grain-boundary scars. Nature Mater. 4, 407–411 (2005).

    Article  CAS  Google Scholar 

  11. Einert, T., Lipowsky, P., Schilling, J., Bowick, M. J. & Bausch, A. R. Grain boundary scars on spherical crystals. Langmuir 21, 12076–12079 (2005).

    Article  CAS  Google Scholar 

  12. Bowick, M. J., Giomi, L., Shin, H. & Thomas, C. K. Bubble-raft model for a paraboloidal crystal. Phys. Rev. E 77, 021602 (2008).

    Article  Google Scholar 

  13. Pertsinidis, A. & Ling, X. S. Diffusion of point defects in two-dimensional colloidal crystals. Nature 413, 147–150 (2001).

    Article  CAS  Google Scholar 

  14. Pertsinidis, A. & Ling, X. S. Equilibrium configurations and energetics of point defects in two-dimensional colloidal crystals. Phys. Rev. Lett. 87, 098303 (2001).

    Article  CAS  Google Scholar 

  15. Pertsinidis, A. & Ling, X. S. Video microscopy and micromechanics studies of one- and two-dimensional colloidal crystals. New J. Phys. 7, 33 (2005).

    Article  Google Scholar 

  16. Bowick, M. J., Shin, H. & Travesset, A. Dynamics and instabilities of defects in two-dimensional crystals on curved backgrounds. Phys. Rev. E 75, 021404 (2007).

    Article  Google Scholar 

  17. Bowick, M. J., Nelson, D. R. & Shin, H. Interstitial fractionalization and spherical crystallography. Phys. Chem. Chem. Phys. 9, 6304–6312 (2007).

    Article  CAS  Google Scholar 

  18. Fisher, D. S., Halperin, B. & Morf, R. Defects in the two-dimensional electron solid and implications for melting. Phys. Rev. B 20, 4692–4712 (1979).

    Article  CAS  Google Scholar 

  19. Cockayne, E. & Elser, V. Energetics of point defects in the two-dimensional Wigner crystal. Phys. Rev. B 43, 623–629 (1991).

    Article  CAS  Google Scholar 

  20. Jain, S. & Nelson, D. R. Statistical mechanics of vacancy and interstitial strings in hexagonal columnar crystals. Phys. Rev. E 61, 1599–1615 (2000).

    Article  CAS  Google Scholar 

  21. Bowick, M. J. & Giomi, L. Two-dimensional matter: Order, curvature and defects. Adv. Phys. 58, 449–563 (2009).

    Article  CAS  Google Scholar 

  22. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  23. Bosma, G. et al. Preparation of monodisperse, fluorescent PMMA-Latex colloids by dispersion polymerization. J. Colloid Interface Sci. 245, 292–300 (2002).

    Article  CAS  Google Scholar 

  24. Antl, L. et al. The preparation of poly(methyl methacrylate) latices in non-aqueous media. Colloids Surf. 17, 67–78 (1986).

    Article  CAS  Google Scholar 

  25. Leunissen, M. E., van Blaaderen, A., Hollingsworth, A. D., Sullivan, M. T. & Chaikin, P. M. Electrostatics at the oil–water interface, stability, and order in emulsions and colloids. Proc. Natl Acad. Sci. USA 104, 2585–2590 (2007).

    Article  CAS  Google Scholar 

  26. Crocker, J. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with S. Sacanna, A. D. Hollingsworth, A. Grosberg, D. Nelson, T. Witten and V. Vitelli. This work was supported by Rhodia, the English speaking union and the MRSEC Program of the National Science Foundation under Award Number DMR-0820054 (WTMI), the National Science Foundation grant DMR-0808812 (MJB), the MRSEC Program of the National Science Foundation under Award Number DMR-0820341 and NSF DMR 1105417 (PMC). W.T.M.I. and M.J.B. acknowledge hospitality from the Aspen Center for Physics.

Author information

Authors and Affiliations

Authors

Contributions

M.J.B., P.M.C. and W.T.M.I. designed the research. W.T.M.I. and P.M.C. designed the experimental system. W.T.M.I. developed the apparatus for simultaneous confocal imaging and optical tweezing, performed experiments, wrote analysis software and analyzed data. W.T.M.I., M.J.B. and P.M.C. wrote the manuscript.

Corresponding authors

Correspondence to William T. M. Irvine, Mark J. Bowick or Paul M. Chaikin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Movie S1 (MP4 170 kb)

Supplementary Information

Supplementary Movie S2 (MP4 556 kb)

Supplementary Information

Supplementary Movie S3 (MOV 339 kb)

Supplementary Information

Supplementary Movie S4 (MOV 467 kb)

Supplementary Information

Supplementary Movie S5 (MOV 80 kb)

Supplementary Information

Supplementary Movie S6 (MOV 442 kb)

Supplementary Information

Supplementary Movie S7 (MP4 110 kb)

Supplementary Information

Supplementary Movie S8 (MOV 490 kb)

Supplementary Information

Supplementary Movie S9 (MOV 1403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, W., Bowick, M. & Chaikin, P. Fractionalization of interstitials in curved colloidal crystals. Nature Mater 11, 948–951 (2012). https://doi.org/10.1038/nmat3429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing