Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods

Abstract

Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage1. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties2,3,4 as well as advances in their synthesis5,6. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g−1 h−1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the photocatalytic generation of H2 under the proposed hole shuttle mechanism.
Figure 2: Photocatalyst characterization and H2 evolution measurements.
Figure 3: Energy diagram for the two-step oxidation reaction.
Figure 4: Effect of pH of the CdS nanocrystal dispersion.

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Maeda, K. & Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  CAS  Google Scholar 

  3. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    Article  CAS  Google Scholar 

  4. Wilker, M. B., Schnitzenbaumer, K. J. & Dukovic, G. Recent progress in photocatalysis mediated by colloidal II–VI nanocrystals. Isr. J. Chem. 52, 1002–1015 (2012).

    Article  CAS  Google Scholar 

  5. Costi, R., Saunders, A. E. & Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010).

    Article  CAS  Google Scholar 

  6. Vaneski, A. et al. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 21, 1547–1556 (2011).

    Article  CAS  Google Scholar 

  7. Kamat, P. V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3, 663–672 (2012).

    Article  CAS  Google Scholar 

  8. Mongin, D. et al. Ultrafast photoinduced charge separation in metal–semiconductor nanohybrids. ACS Nano 6, 7034–7043 (2012).

    Article  CAS  Google Scholar 

  9. Amirav, L. & Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 1, 1051–1054 (2010).

    Article  CAS  Google Scholar 

  10. O’Connor, T. et al. The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. ACS Nano 6, 8156–8165 (2012).

    Article  Google Scholar 

  11. Zhu, H., Song, N., Lv, H., Hill, C. L. & Lian, T. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 134, 11701–11708 (2012).

    Article  CAS  Google Scholar 

  12. Berr, M. J. et al. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett. 100, 223903 (2012).

    Article  Google Scholar 

  13. Berr, M. et al. Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl. Phys. Lett. 97, 093108 (2010).

    Article  Google Scholar 

  14. Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W. & Lian, T. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012).

    CAS  Google Scholar 

  15. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    Article  CAS  Google Scholar 

  16. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  17. Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, W., Wang, Y., Wang, Z., Zhong, Z. & Xu, R. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 46, 7631–7633 (2010).

    Article  CAS  Google Scholar 

  19. Khan, Z., Khannam, M., Vinothkumar, N., De, M. & Qureshi, M. Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J. Mater. Chem. 22, 12090–12095 (2012).

    Article  CAS  Google Scholar 

  20. Chen, X. et al. In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 36, 104–108 (2013).

    Article  CAS  Google Scholar 

  21. Ran, J., Yu, J. & Jaroniec, M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem. 13, 2708–2713 (2011).

    Article  CAS  Google Scholar 

  22. Halliwell, B., Gutteridge, J. M. C. & Aruoma, O. I. The deoxyribose method: A simple ‘test-tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165, 215–219 (1987).

    Article  CAS  Google Scholar 

  23. Dukovic, G., Merkle, M. G., Nelson, J. H., Hughes, S. M. & Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 20, 4306–4311 (2008).

    Article  CAS  Google Scholar 

  24. Zhao, J., Holmes, M. A. & Osterloh, F. E. Quantum confinement controls photocatalysis: A free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7, 4316–4325 (2013).

    Article  CAS  Google Scholar 

  25. Meissner, D., Memming, R. & Kastening, B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. 92, 3476–3483 (1988).

    Article  CAS  Google Scholar 

  26. Borgarello, E., Kalyanasundaram, K., Grätzel, M. & Pelizzetti, E. Visible light induced generation of hydrogen from H2S in CdS-dispersions, hole transfer catalysis by RuO2 . Helv. Chim. Acta 65, 243–248 (1982).

    Article  CAS  Google Scholar 

  27. Koppenol, W. H. & Liebman, J. F. The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J. Phys. Chem. 88, 99–101 (1984).

    Article  CAS  Google Scholar 

  28. Tang, W. Z. & Huang, C. P. Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Wat. Res. 29, 745–756 (1995).

    Article  CAS  Google Scholar 

  29. Wang, J., Su, S., Liu, B., Cao, M. & Hu, C. One-pot, low-temperature synthesis of self-doped NaTaO3 nanoclusters for visible-light-driven photocatalysis. Chem. Commun. 49, 7830–7832 (2013).

    Article  CAS  Google Scholar 

  30. Saunders, A. E., Ghezelbash, A., Sood, P. & Korgel, B. A. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence. Langmuir 24, 9043–9049 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant ‘Solar Technologies go Hybrid (SolTech)’, by the German Science Foundation (DFG) and by a grant from the Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the German Academic Exchange Service (DAAD, Ref. No.: G_HK004/12). A.L.R. acknowledges support by the Alexander von Humboldt Foundation. The authors thank J. Marquard for assistance in acetaldehyde detection using the GC-MS system, M. Carlson for supplying MPA-coated CdS nanorods and C. Hohmann (Nanosystems Initiative Munich) for his support in graphics design.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments, the interpretation of the results and a discussion of the outline of the manuscript. T.S., N.B., M.J.B., A.V., A.A., D.V., R.W. and M.D. carried out the experiments. J.K.S. wrote the manuscript, with input and comments from other authors.

Corresponding authors

Correspondence to Jacek K. Stolarczyk or Jochen Feldmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, T., Bouchonville, N., Berr, M. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Mater 13, 1013–1018 (2014). https://doi.org/10.1038/nmat4049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing