Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity

Abstract

A centrosymmetric stress cannot induce a polar response in centric materials; piezoelectricity is, for example, possible only in non-centrosymmetric structures. An exception is metamaterials with shape asymmetry, which may be polarized by stress even when the material is centric. In this case the mechanism is flexoelectricity, which relates polarization to a strain gradient. The flexoelectric response scales inversely with size, thus a large effect is expected in nanoscale materials. Recent experiments in polycrystalline, centrosymmetric perovskites (for example, (Ba, Sr)TiO3) have indicated values of flexoelectric coefficients that are orders of magnitude higher than theoretically predicted, promising practical applications based on bulk materials. We show that materials with unexpectedly large flexoelectric response exhibit breaking of the macroscopic centric symmetry through inhomogeneity induced by the high-temperature processing. The emerging electro-mechanical coupling is significant and may help to resolve the controversy surrounding the large apparent flexoelectric coefficients in this class of materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flipped trapezoidal prism experiment.
Figure 2: Pyroelectric current in BST60/40 and SrTiO3.
Figure 3: Frequency dependence of properties.
Figure 4: Thermally stimulated and pyroelectric currents.
Figure 5: Built-in polarization and its direction.
Figure 6: XRD analysis of a sintered BST60/40 sample.

Similar content being viewed by others

References

  1. Frenkel, A. et al. Origin of polarity in amorphous SrTiO3 . Phys. Rev. Lett. 99, 215502 (2007).

    Article  Google Scholar 

  2. Scott, J. F. Lattice perturbations in CaWO4 and CaMoO4 . J. Chem. Phys. 48, 874–876 (1968).

    Article  CAS  Google Scholar 

  3. Fox, G. R., Yamamoto, J. K., Miller, D. V., Cross, L. E. & Kurtz, S. K. Thermal hysteresis of optical second harmonic in paralelectric BaTiO3 . Mater. Lett. 9, 284–288 (1990).

    Article  CAS  Google Scholar 

  4. Wieczorek, K. et al. Electrostrictive and piezoelectric effect in BaTiO3 and PbZrO3 . Ferroelectrics 336, 61–67 (2006).

    Article  CAS  Google Scholar 

  5. Beige, H., Birkholz, C., Ciesla, E. & Schmidt, G. Elastic and electromechanical properties of some crystals near structural phase transitions. Phys. Status Solidi B 76, K47–K50 (1976).

    Article  CAS  Google Scholar 

  6. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, 1979).

    Google Scholar 

  7. Kleemann, W., Schafer, F. J. & Fontana, M. D. Crystal optical studies of spontaneous and precursor polarization in KNbO3 . Phys. Rev. B 30, 1148–1154 (1984).

    Article  CAS  Google Scholar 

  8. Aktas, O., Carpenter, M. A. & Salje, E. K. H. Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy. Appl. Phys. Lett. 103, 142902 (2013).

    Article  Google Scholar 

  9. Morozovska, A. N., Eliseev, E. A., Kalinin, S. V., Qing Chen, L. & Gopalan, V. Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field. Appl. Phys. Lett. 100, 142902 (2012).

    Article  Google Scholar 

  10. Burns, G. & Dacol, F. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).

    Article  CAS  Google Scholar 

  11. Bussmann-Holder, A., Beige, H. & Völkel, G. Precursor effects, broken local symmetry, and coexistence of order–disorder and displacive dynamics in perovskite ferroelectrics. Phys. Rev. B 79, 184111 (2009).

    Article  Google Scholar 

  12. Kuroiwa, Y. et al. High-energy SR powder diffraction evidence of multisite disorder of Pb atom in cubic phase of PbZr1−xTixO3 . Jpn. J. Appl. Phys. 44, 7151–7155 (2005).

    Article  CAS  Google Scholar 

  13. Prosandeev, S., Wang, D. & Bellaiche, L. Properties of epitaxial films made of relaxor ferroelectrics. Phys. Rev. Lett. 111, 247602 (2013).

    Article  CAS  Google Scholar 

  14. Bursian, E. V. & Zaikovski, O. I. Changes in the curvaure of a ferroelectric film due to polarization. Sov. Phys.-Solid State 10, 1121–1124 (1968).

    Google Scholar 

  15. Luo, Y. et al. Upward ferroelectric self-poling in (001) oriented PbZr0.2Ti0.8O3 epitaxial films with compressive strain. AIP Adv. 3, 122101 (2013).

    Article  Google Scholar 

  16. Fousek, J., Cross, L. E. & Litvin, D. B. Possible piezoelectric composites based on the flexoelectric effect. Mater. Lett. 39, 287–291 (1999).

    Article  CAS  Google Scholar 

  17. Cross, L. E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006).

    Article  CAS  Google Scholar 

  18. Tagantsev, A. K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986).

    Article  CAS  Google Scholar 

  19. Majdoub, M. S., Sharma, P. & Cagin, T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008).

    Article  Google Scholar 

  20. Fu, J. Y., Zhu, W. Y., Li, N., Smith, N. B. & Cross, L. E. Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites. Appl. Phys. Lett. 91, 182910 (2007).

    Article  Google Scholar 

  21. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  CAS  Google Scholar 

  22. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Mater. 10, 963–967 (2011).

    Article  CAS  Google Scholar 

  23. Borisevich, A. Y. et al. Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Commun. 3, 775 (2012).

    Article  CAS  Google Scholar 

  24. Lakes, R. The role of gradient effects in the piezoelectricity of bone. IEEE Trans. Biomed. Eng. 27, 282–283 (1980).

    Article  CAS  Google Scholar 

  25. Ma, W. H. & Cross, L. E. Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005).

    Article  Google Scholar 

  26. Chu, B., Zhu, W., Li, N. & Cross, L. E. Flexure mode flexoelectric piezoelectric composites. J. Appl. Phys. 106, 104109 (2009).

    Article  Google Scholar 

  27. Ponomareva, I., Tagantsev, A. K. & Bellaiche, L. Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 85, 104101 (2012).

    Article  Google Scholar 

  28. Hong, J. & Vanderbilt, D. First-principles theory and calculation of flexoelectricity. Phys. Rev. B 88, 174107 (2013).

    Article  Google Scholar 

  29. Yudin, P. V., Ahluwalia, R. & Tagantsev, A. K. Upper bounds for flexoelectric coefficients in ferroelectrics. Appl. Phys. Lett. 104, 082913 (2014).

    Article  Google Scholar 

  30. Zhou, L., Vilarinho, P. M. & Baptista, J. L. Dependence of the structural and dielectric properties of Ba1−xSrxTiO3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19, 2015–2020 (1999).

    Article  CAS  Google Scholar 

  31. Ma, W. H. & Cross, L. E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002).

    Article  CAS  Google Scholar 

  32. Zubko, P., Catalan, G., Buckley, A., Welche, R. L. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  CAS  Google Scholar 

  33. Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article  CAS  Google Scholar 

  34. Narvaez, J. & Catalan, G. Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. 104, 162903 (2014).

    Article  Google Scholar 

  35. Chynoweth, A. G. Dynamic method for measuring the pyroelectric effect with special refernce to barium titanate. J. Appl. Phys. 27, 78–84 (1956).

    Article  CAS  Google Scholar 

  36. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2005).

    Google Scholar 

  37. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, 1971).

    Google Scholar 

  38. Dec, J. et al. Probing polar nanoregions in Sr0.61Ba0.39Nb2O6 via second-harmonic dielectric response. Phys. Rev. B 68, 092105 (2003).

    Article  Google Scholar 

  39. Van Turnhout, J. Thermally Stimulated Discharge of Polymer Electrets: A Study on Nonisothermal Dielectric Relaxation Phenomena (Elsevier, 1975).

    Google Scholar 

  40. Lau, W. S., Chong, T. C., Tan, L. S., Goo, C. H. & Kian, S. G. The characterization of traps in semi-insulating gallium arsenide buffer layers grown at low temperature by molecular beam epitaxy with an improved zero-bias thermally stimurated current technique. Jpn. J. Appl. Phys. 30, L1843–L1846 (1991).

    Article  CAS  Google Scholar 

  41. Roth, M., Mojaev, E., Dul’kin, E., Gemeiner, P. & Dkhil, B. Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics. Phys. Rev. Lett. 98, 265701 (2007).

    Article  Google Scholar 

  42. Cao, Y., Shen, J., Randall, C. A. & Chen, L. Q. Phase-field modeling of switchable diode-like current–voltage characteristics in ferroelectric BaTiO3 . Appl. Phys. Lett. 104, 182905 (2014).

    Article  Google Scholar 

  43. Liu, W. & Randall, C. A. Thermally stimulated relaxation in Fe-doped SrTiO3 Systems: II. Degradation of SrTiO3 dielectrics. J. Am. Ceram. Soc. 91, 3251–3257 (2008).

    Article  CAS  Google Scholar 

  44. Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, N. A. Strain-controlled oxygen vacancy formation and ordering in CaMnO3 . Phys. Rev. B 88, 054111 (2013).

    Article  Google Scholar 

  45. Adler, S. B. Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84, 2117–2119 (2001).

    Article  CAS  Google Scholar 

  46. Erhart, P. & Albe, K. Thermodynamics of mono- and di-vacancies in barium titanate. J. Appl. Phys. 102, 084111 (2007).

    Article  Google Scholar 

  47. Lewis, G. V. & Catlow, C. R. A. Defect studies of doped and undoped barium titanate using computer simulation techniques. J. Phys. Chem. Solids 47, 89–97 (1986).

    Article  CAS  Google Scholar 

  48. Levin, I., Krayzman, V. & Woicik, J. C. Local structure in perovskite (Ba, Sr)TiO3: Reverse Monte Carlo refinements from multiple measurement techniques. Phys. Rev. B 89, 024106 (2014).

    Article  Google Scholar 

  49. Lenel, F. V., Hausner, H. H., Roman, O. V. & Ansell, G. S. The influence of gravity in sintering. Powder Metall. Met. Ceram. 2, 379–384 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation through NRP62 ‘Smart materials’ (Project No. 406240 -126091). The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.B. prepared all materials and performed most of the experiments. D.D. conceived the idea of testing the symmetry breaking and its effect on the apparent flexoelectric response, and performed some of the experiments. A.B. and D.D. analysed and interpreted the electrical data. C.M.F. performed XRD measurements and analysed the data under the supervision of J.L.J. D.D. wrote the article and all authors contributed and commented on the text.

Corresponding author

Correspondence to Dragan Damjanovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancoli, A., Fancher, C., Jones, J. et al. Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nature Mater 14, 224–229 (2015). https://doi.org/10.1038/nmat4139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing