Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Template-free nanosized faujasite-type zeolites

Subjects

Abstract

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10–15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g−1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Highly crystalline nanosized FAU-type zeolite crystals.
Figure 2: Highly stable precursor suspensions resulting in stable colloidal suspensions consisting of nanosized FAU-type zeolite crystals.
Figure 3: Highly crystalline FAU-type zeolites with nanosized particles and octahedral morphology.
Figure 4: Highly porous nanosized FAU-type zeolites with unusually high total pore volume.
Figure 5: Superior catalytic activity of the nanosized FAU compared to a commercial sample.

Similar content being viewed by others

References

  1. Breck, D. W. Zeolites and Molecular Sieves System (Wiley, 1974).

    Google Scholar 

  2. Vermeiren, W. & Gilson, J-P. Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 52, 1131–1161 (2009).

    Article  CAS  Google Scholar 

  3. Martinez, C. & Corma, A. Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

    Article  CAS  Google Scholar 

  4. Perego, C. & Bosetti, A. Biomass to fuels: The role of zeolite and mesoporous materials. Microporous Mesoporous Mater. 144, 28–39 (2011).

    Article  CAS  Google Scholar 

  5. Guisnet, M. & Gilson, J-P. Zeolites for Cleaner Technologies (Imperial College Press, 2002).

    Book  Google Scholar 

  6. Valtchev, V., Majano, G., Mintova, S. & Pérez-Ramírez, J. Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 42, 263–290 (2013).

    Article  CAS  Google Scholar 

  7. Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis (Wiley-VCH, 2010).

    Book  Google Scholar 

  8. Chen, N. Y., Degnan, T. F. C. & Smith, M. Molecular Transport and Reaction in Zeolites: Design and Application of Shape Selective Catalysis (John Wiley, 1994).

    Google Scholar 

  9. Jacobs, P. A., Dusselier, M. & Sels, B. F. Will zeolite-based catalysis be as relevant in future biorefineries as in crude oil refineries? Angew. Chem. Int. Ed. 53, 2–8 (2014).

    Article  Google Scholar 

  10. Gilson, J-P., Marie, O., Mintova, S. & Valtchev, V. Zeolites and Ordered Porous Solids, 3rd FEZA School on Zeolites: Fundamentals and Applications (Editorial Universitat Politècnica de València, 2011).

    Google Scholar 

  11. Bein, T. & Mintova, S. Advanced Applications of Zeolites in Zeolites and Ordered Mesoporous Materials: Progress and Prospects Vol. 263 (Elsevier, 2005).

    Google Scholar 

  12. Mintova, S., Olson, N. H. & Bein, T. Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids. Angew. Chem. 38, 3201–3204 (1999).

    Article  CAS  Google Scholar 

  13. Yang, S. Y., Navrotsky, A. & Phillips, B. L. An in situ calorimetric study of the synthesis of FAU zeolite. Microporous Mesoporous Mater. 46, 137–151 (2001).

    Article  CAS  Google Scholar 

  14. Li, Q. H., Creaser, D. & Sterte, J. An investigation of the nucleation/crystallization kinetics of nanosized colloidal faujasite zeolites. Chem. Mater. 14, 1319–1324 (2002).

    Article  CAS  Google Scholar 

  15. Holmberg, B. A., Wang, H., Norbeck, J. M. & Yan, Y. Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. Microporous Mesoporous Mater. 59, 13–28 (2003).

    Article  CAS  Google Scholar 

  16. Larsen, S. C. Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. J. Phys. Chem. C 111, 18464–18474 (2007).

    Article  CAS  Google Scholar 

  17. Tosheva, L. & Valtchev, V. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 17, 2494–2513 (2005).

    Article  CAS  Google Scholar 

  18. Larlus, O., Mintova, S. & Bein, T. Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous Mesoporous Mater. 96, 405–412 (2006).

    Article  CAS  Google Scholar 

  19. Li, Q., Mihailova, B., Creaser, D. & Sterte, J. The nucleation period for crystallization of colloidal TPA-silicalite-1 with varying silica source. Microporous Mesoporous Mater. 40, 53–62 (2000).

    Article  CAS  Google Scholar 

  20. Morales-Pacheco, P. et al. Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal. Today 166, 25–38 (2011).

    Article  CAS  Google Scholar 

  21. Valtchev, V. P. & Bozhilov, K. N. TEM study of the formation of FAU-type zeolite at room temperature. J. Phys. Chem. B 108, 15587–15598 (2004).

    Article  CAS  Google Scholar 

  22. Zhan, B-Z. et al. Control of particle size and surface properties of crystals of NaX zeolite. Chem. Mater. 14, 3636–3642 (2002).

    Article  CAS  Google Scholar 

  23. Ng, E-P., Chateigner, D., Bein, T., Valtchev, V. & Mintova, S. Capturing ultrasmall EMT zeolite from template-free systems. Science 335, 70–73 (2012).

    Article  CAS  Google Scholar 

  24. Mintova, S., Olson, N. H., Valtchev, V. & Bein, T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science 283, 958–960 (1999).

    Article  CAS  Google Scholar 

  25. Barrer, R. M. Hydrothermal Chemistry of Zeolites (Academic Press, 1982).

    Google Scholar 

  26. Engelhardt, G. & Michel, D. High Resolution Solid State NMR of Silicates and Zeolites (Wiley, 1987).

    Google Scholar 

  27. Treacy, M. M. J., Vaughan, D. E. W., Strohmaier, K. G. & Newsam, J. M. Intergrowth segregation in FAU-EMT zeolite materials. Proc. R. Soc. Lond. A 452, 813–840 (1996).

    Article  CAS  Google Scholar 

  28. Khaleel, M., Wagner, A. J., Mkhoyan, A. & Tsapatsis, M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angew. Chem. Int. Ed. 53, 9456–9461 (2014).

    Article  CAS  Google Scholar 

  29. Chateigner, D. Combined Analysis (Wiley-ISTE, 2010).

    Google Scholar 

  30. Lutterotti, L., Matthies, S. & Wenk, H-R. in Textures of Materials (ed Szpunar, J. A.) (NRC Research Press, 2002).

    Google Scholar 

  31. Chal, R., Gerardin, C., Bulut, M. & van Donk, S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3, 67–81 (2011).

    Article  CAS  Google Scholar 

  32. Verboekend, D. et al. Mesoporous ZSM-22 zeolite obtained by desilication: Peculiarities associated with crystal morphology and aluminium distribution. Catal. Sci. Technol. 1, 3408–3416 (2011).

    Google Scholar 

  33. Martens, J. A. et al. Hydroisomerization of emerging renewable hydrocarbons using hierarchical Pt/H-ZSM-22 catalyst. ChemSusChem 6, 421–425 (2013).

    Article  CAS  Google Scholar 

  34. Rajagopalan, K., Peters, A. W. & Edwards, G. C. Influence of zeolite particle size on selectivity during fluid catalytic cracking. Appl. Catal. 23, 69–80 (1986).

    Article  CAS  Google Scholar 

  35. Derouane, E. G., Gilson, J-P., Gabelica, Z., Mousty-Desbuquoit, C. & Verbist, J. Concerning the aluminum distribution gradient in ZSM-5 zeolites. J. Catal. 71, 447–448 (1981).

    Article  CAS  Google Scholar 

  36. Gilson, J-P. & Derouane, E. G. On the external and intracrystalline surface catalytic activity of pentasil zeolites. J. Catal. 88, 538–541 (1984).

    Article  CAS  Google Scholar 

  37. Corma, A. et al. 2,6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites. J. Catal. 179, 451–458 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Region of Lower Normandy and the MEET INTEREG EC and MicroGreen (ANR-12-IS08-01) projects is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. H.A. and S.M. designed the experiment. H.A., J-M.G. and J-P.G. performed the catalytic experiment and discussed the results; R.R. and P.B. performed the HRTEM and Rietveld refinement, respectively. S.M., V.V. and J-P.G. analysed output data and wrote the manuscript.

Corresponding author

Correspondence to Svetlana Mintova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awala, H., Gilson, JP., Retoux, R. et al. Template-free nanosized faujasite-type zeolites. Nature Mater 14, 447–451 (2015). https://doi.org/10.1038/nmat4173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing