Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photooxidation and quantum confinement effects in exfoliated black phosphorus

Abstract

Thin layers of black phosphorus have recently raised interest owing to their two-dimensional (2D) semiconducting properties, such as tunable direct bandgap and high carrier mobilities. This lamellar crystal of phosphorus atoms can be exfoliated down to monolayer 2D-phosphane (also called phosphorene) using procedures similar to those used for graphene. Probing the properties has, however, been challenged by a fast degradation of the thinnest layers on exposure to ambient conditions. Herein, we investigate this chemistry using in situ Raman and transmission electron spectroscopies. The results highlight a thickness-dependent photoassisted oxidation reaction with oxygen dissolved in adsorbed water. The oxidation kinetics is consistent with a phenomenological model involving electron transfer and quantum confinement as key parameters. A procedure carried out in a glove box is used to prepare mono-, bi- and multilayer 2D-phosphane in their pristine states for further studies on the effect of layer thickness on the Raman modes. Controlled experiments in ambient conditions are shown to lower the Ag1/Ag2 intensity ratio for ultrathin layers, a signature of oxidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photooxidation of multilayer 2D-phosphane under constant illumination at room temperature.
Figure 2: Chemical analysis by hyperspectral TEM-EELS spectroscopy of a multilayer 2D-phosphane exfoliated under ambient light in air.
Figure 3: Evolution of the photooxidation reaction in ambient conditions of multilayer 2D-phosphane probed by TEM-EELS analysis.
Figure 4: High-angle annular dark-field (HAADF) contrast images and core-loss images of oxidized multilayer 2D-phosphane recorded at 80 kV.
Figure 5: Raman spectroscopy (λ = 532 nm) at 300 K of n-layer 2D-phosphane and bulk P(black) exfoliated using an improved exfoliation method in a glove box.
Figure 6: Raman characteristics (λ = 532 nm) at 300 K of n-layer 2D-phosphane as a function of AFM thickness and Raman signature of oxidation for n = 1, 2 and 3.

Similar content being viewed by others

References

  1. Bridgeman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article  Google Scholar 

  2. Hultgren, R., Gingrich, N. S. & Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935).

    Article  CAS  Google Scholar 

  3. Keyes, R. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

    Article  CAS  Google Scholar 

  4. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963).

    Article  CAS  Google Scholar 

  5. Appalakondaiah, S., Vaitheeswaran, G., Lèbegue, S., Christensen, N. E. & Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86, 035105 (2012).

    Article  Google Scholar 

  6. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  7. Liu, H. et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  8. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  9. Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

    Article  CAS  Google Scholar 

  10. Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014).

    Article  Google Scholar 

  11. Park, C-M. & Sohn, H-J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007).

    Article  CAS  Google Scholar 

  12. Asahina, H. & Morita, A. Band structure and optical properties of black phosphorus. J. Phys. C 17, 1839–1852 (1984).

    Article  CAS  Google Scholar 

  13. Yau, S-L., Moffat, T. P., Bard, A. J., Zhang, Z. & Lerner, M. M. STM of the (010) surface of orthorhombic phosphorus. Chem. Phys. Lett. 198, 383–388 (1992).

    Article  CAS  Google Scholar 

  14. Yoshihara, A., Fujimura, T., Oka, Y., Fujisaki, H. & Shirotani, I. Surface Brillouin scattering in black phosphorus. Phys. Rev. B 34, 7467–7470 (1986).

    Article  CAS  Google Scholar 

  15. Zhang, C. D. et al. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 113, 18823–18826 (2009).

    Article  CAS  Google Scholar 

  16. Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  Google Scholar 

  17. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  Google Scholar 

  18. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  19. Du, Y., Ouyang, C., Shi, S. & Lei, M. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718 (2010).

    Article  Google Scholar 

  20. International Union of Pure and Applied Chemistry (IUPAC) Compendium of Chemical Terminology, 2nd edn (eds McNaught, A. D. & Wilkinson, A.) (Blackwell Scientific Publications, 1997)

  21. Holleman, A. F. & Wiberg, N. Inorganic Chemistry (Academic Press, 2001).

    Google Scholar 

  22. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    Article  CAS  Google Scholar 

  23. Sugai, S. & Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

    Article  CAS  Google Scholar 

  24. Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599 (1989).

    Article  CAS  Google Scholar 

  25. Akahama, Y., Kobayashi, M. & Kawamura, H. Raman study of black phosphorus up to 13 GPa. Solid State Commun. 104, 311–315 (1997).

    Article  CAS  Google Scholar 

  26. Sari, S. S. et al. Graphene field-effect transistors with parylene gate dielectric. Appl. Phys. Lett. 95, 242104 (2009).

    Article  Google Scholar 

  27. Aguirre, C. M. et al. The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv. Mater. 21, 3087–3091 (2009).

    Article  CAS  Google Scholar 

  28. Levesque, P. L. et al. Probing charge transfer at surface using graphene transistors. Nano Lett. 11, 132–137 (2011).

    Article  CAS  Google Scholar 

  29. Brunel, D. et al. Control over the interface properties of carbon nanotube-based optoelectronic memory devices. Appl. Phys. Lett. 102, 013103 (2013).

    Article  Google Scholar 

  30. Memming, R. Semiconductor Electrochemistry (Wiley-VCH, 2001).

    Google Scholar 

  31. Ryu, S. et al. Reversible basal plane hydrogenation of graphene. Nano Lett. 8, 4597–4602 (2008).

    Article  CAS  Google Scholar 

  32. Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014).

    Article  CAS  Google Scholar 

  33. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013).

    Article  CAS  Google Scholar 

  34. Terrones, H. et al. New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014).

    Article  CAS  Google Scholar 

  35. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  36. Shahil, K. M. F. et al. Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 111, 054305 (2012).

    Article  Google Scholar 

  37. Luo, X. et al. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2 . Phys. Rev. B 88, –195313 (2013).

  38. Yamamoto, M. et al. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2 . ACS Nano 8, 3895–3903 (2014).

    Article  CAS  Google Scholar 

  39. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  40. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).

    Google Scholar 

  41. Wang, Y. & Sherwood, P. M. A. Phosphorus pentoxide (P2O5) by XPS. Surf. Sci. Spectra 9, 159–165 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of A. Dietrich for early sample preparation and experiments and T. Szkopek for insightful discussions. The authors also thank P. Moraille, from the Central Facilities at the Université de Montreal, for help on controlled atmosphere AFM measurements. This work was made possible by financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du Québec—Nature et Technologie (FRQNT). This research has also received partial funding from the European Union Seventh Framework Program under grant agreement no. 604391 Graphene Flagship.

Author information

Authors and Affiliations

Authors

Contributions

A.F., E.G., F.F. and A-L.P-L’H. performed the experiments and analysed the results. A.F., E.G., P.L.L., S.F. and R.M. designed the experiments and developed the model. N.Y-W.T. helped with sample preparation. A.L., R.L., S.F. and R.M. supervised the work and discussed the results. All authors contributed to the scientific discussions, manuscript preparation and final revision.

Corresponding author

Correspondence to Richard Martel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favron, A., Gaufrès, E., Fossard, F. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Mater 14, 826–832 (2015). https://doi.org/10.1038/nmat4299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing