Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetically assisted slip casting of bioinspired heterogeneous composites

An Addendum to this article was published on 01 December 2017

This article has been updated

Abstract

Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the magnetically assisted slip-casting (MASC) process.
Figure 2: Anisotropic structures with periodic platelet orientation patterns obtained through programmed alignment using MASC.
Figure 3: Processing MASC structures into multifunctional composites.
Figure 4: Design and fabrication of a bioinspired composite that resembles the complex shape and heterogeneous architecture of natural tooth.

Similar content being viewed by others

Change history

  • 10 November 2017

    This Article has an addendum associated with it, for details see pdf.

References

  1. Gibson, L. J., Ashby, M. F. & Harley, B. A. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

    Google Scholar 

  2. Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C. & Chen, G. Biological glass fibers: Correlation between optical and structural properties. Proc. Natl Acad. Sci. USA 101, 3358–3363 (2004).

    Article  CAS  Google Scholar 

  3. Studart, A. R. Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv. Funct. Mater. 23, 4423–4436 (2013).

    Article  CAS  Google Scholar 

  4. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nature Mater. 14, 23–36 (2014).

    Article  CAS  Google Scholar 

  5. Meyers, M. A., McKittrick, J. & Chen, P.-Y. Structural biological materials: Critical mechanics-materials connections. Science 339, 773–779 (2013).

    Article  CAS  Google Scholar 

  6. Dunlop, J. W. C. & Fratzl, P. Biological composites. Annu. Rev. Mater. Res. 40, 1–24 (2010).

    Article  CAS  Google Scholar 

  7. Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J. & Ritchie, R. O. The dentin-enamel junction and the fracture of human teeth. Nature Mater. 4, 229–232 (2005).

    Article  CAS  Google Scholar 

  8. Qi, H. J., Bruet, B. J. F., Palmer, J. S., Ortiz, C. & Boyce, M. C. Mechanics of Biological Tissue 189–203 (Springer, 2005).

    Google Scholar 

  9. Yang, W. et al. Natural flexible dermal armor. Adv. Mater. 25, 31–48 (2013).

    Article  CAS  Google Scholar 

  10. Vincent, J. F. V. & Wegst, U. G. K. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187–199 (2004).

    Article  Google Scholar 

  11. Romano, P., Fabritius, H. & Raabe, D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater. 3, 301–309 (2007).

    Article  CAS  Google Scholar 

  12. Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U. & Vignolini, S. Natural helicoidal structures: Morphology, self-assembly and optical properties. Mater. Today Proc. 1, 177–185 (2014).

    Article  Google Scholar 

  13. Wagermaier, W. et al. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1, 1–5 (2006).

    Article  CAS  Google Scholar 

  14. Burgert, I. & Fratzl, P. Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr. Comput. Biol. 49, 69–79 (2009).

    Article  Google Scholar 

  15. Meyers, M. A., Chen, P.-Y., Lopez, M. I., Seki, Y. & Lin, A. Y. M. Biological materials: A materials science approach. J. Mech. Behav. Biomed. Mater. 4, 626–657 (2011).

    Article  Google Scholar 

  16. Currey, J. D. & Kohn, A. J. Fracture in the crossed-lamellar structure of Conus shells. J. Mater. Sci. 11, 1615–1623 (1976).

    Article  Google Scholar 

  17. Amini, S. et al. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Commun. 5, 3187–3199 (2014).

    Article  CAS  Google Scholar 

  18. Maas, M. C. & Dumont, E. R. Built to last: The structure, function, and evolution of primate dental enamel. Evol. Anthropol. 8, 133–152 (1999).

    Article  Google Scholar 

  19. Weaver, J. C. et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article  CAS  Google Scholar 

  20. Bentov, S. et al. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nature Commun. 3, 839–846 (2012).

    Article  CAS  Google Scholar 

  21. Seabaugh, M. M., Kerscht, I. H. & Messing, G. L. Texture development by templated grain growth in liquid phase sintered alpha-alumina. J. Am. Ceram. Soc. 80, 1181–1188 (1997).

    Article  CAS  Google Scholar 

  22. Libanori, R. et al. Stretchable heterogeneous composites with extreme mechanical gradients. Nature Commun. 3, 1265–1274 (2012).

    Article  CAS  Google Scholar 

  23. Erb, R. M., Segmehl, J., Schaffner, M. & Studart, A. R. Temporal response of magnetically labeled platelets under dynamic magnetic fields. Soft Matter 9, 498–505 (2013).

    Article  CAS  Google Scholar 

  24. Erb, R. M., Segmehl, J., Charilaou, M., Löffler, J. F. & Studart, A. R. Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields. Soft Matter 8, 7604–7609 (2012).

    Article  CAS  Google Scholar 

  25. Sakka, Y. & Suzuki, T. S. Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. J. Ceram. Soc. Jpn 113, 26–36 (2005).

    Article  CAS  Google Scholar 

  26. Sakka, Y., Suzuki, T. S., Tanabe, N., Asai, S. & Kitazawa, K. Alignment of titania whisker by colloidal filtration in a high magnetic field. Jpn. J. Appl. Phys. 41, 1416–1418 (2002).

    Article  CAS  Google Scholar 

  27. Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012).

    Article  CAS  Google Scholar 

  28. Libanori, R., Erb, R. M. & Studart, A. R. Mechanics of platelet-reinforced composites assembled using mechanical and magnetic stimuli. ACS Appl. Mater. Interfaces 5, 10794–10805 (2013).

    Article  CAS  Google Scholar 

  29. Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nature Commun. 4, 1712 (2013).

    Article  CAS  Google Scholar 

  30. Bouville, F., Maire, E. & Deville, S. Self-assembly of faceted particles triggered by a moving ice front. Langmuir 30, 8656–8663 (2014).

    Article  CAS  Google Scholar 

  31. Hunger, P. M., Donius, A. E. & Wegst, U. G. K. Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013).

    Article  CAS  Google Scholar 

  32. Porter, M. M. et al. Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A 556, 741–750 (2012).

    Article  CAS  Google Scholar 

  33. Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T. & Goto, Y. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J. Mater. Sci. 36, 2523–2527 (2001).

    Article  CAS  Google Scholar 

  34. Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  CAS  Google Scholar 

  35. Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  36. Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Mater. 13, 508–514 (2014).

    Article  CAS  Google Scholar 

  37. Walther, A. et al. Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. Angew. Chem. Int. Ed. 49, 6448–6453 (2010).

    Article  CAS  Google Scholar 

  38. Yao, H. B., Fang, H. Y., Tan, Z. H., Wu, L. H. & Yu, S. H. Biologically inspired, strong, transparent, and functional layered organic–inorganic hybrid films. Angew. Chem. Int. Ed. 49, 2140–2145 (2010).

    Article  CAS  Google Scholar 

  39. Reed, J. S. Principles of Ceramic Processing (Wiley, 1995).

    Google Scholar 

  40. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article  CAS  Google Scholar 

  41. Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 24, 5024–5044 (2012).

    Article  CAS  Google Scholar 

  42. Bouville, F., Maire, E. & Deville, S. Lightweight and stiff cellular ceramic structures by ice templating. J. Mater. Res. 29, 175–181 (2014).

    Article  CAS  Google Scholar 

  43. Studart, A. R., Filser, F., Kocher, P. & Gauckler, L. J. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent. Mater. 23, 106–114 (2007).

    Article  CAS  Google Scholar 

  44. Ghielmetti, N. Enhancement of the Electron Collection Efficiency in Dye-Sensitized Solar Cells Master thesis, ETH Zürich (2011)

  45. Launey, M. E. et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Libanori, D. Carnelli, N. Ghielmetti, J. Reuteler, B. Wegmann and P. Kocher for experimental assistance and discussions. We acknowledge internal funding from ETH Zürich and the Swiss National Science Foundation (grant 200020_146509), as well as support by the Center for Optical and Electron microscopy of ETH Zürich (ScopeM).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by H.L.F., F.B., T.P.N. and A.R.S., and conducted by H.L.F., F.B. and T.P.N. H.L.F. produced the scaffolds with controlled texture and composition and characterized the process and the products. F.B. prepared the nacre-like scaffolds (fully ceramic and with mineral bridges), performed the density control experiment and the mechanical characterization. T.P.N. did the polymer chemistry, the scaffold infiltration and the nacre-like copper composites. H.L.F., F.B. and T.P.N. designed the figures and the Supplementary Information, and A.R.S. wrote the main paper. All authors discussed the results and their implications, and revised the manuscript at all stages.

Corresponding author

Correspondence to André R. Studart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4146 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 1805 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 17472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Ferrand, H., Bouville, F., Niebel, T. et al. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Mater 14, 1172–1179 (2015). https://doi.org/10.1038/nmat4419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing