Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Electromagnetic toroidal excitations in matter and free space

Abstract

The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Toroidal structures at different length scales.
Figure 2: The 'multipole zoo'.
Figure 3: Toroidal metamaterials.
Figure 4: Non-radiating configurations.
Figure 5: Focused doughnut pulses.

Similar content being viewed by others

References

  1. Raab, R. E. & de Lange, O. L. Multipole Theory in Electromagnetism (Oxford University Press, 2004).

    Book  Google Scholar 

  2. Dubovik, V. M., Tosunyan, L. A. & Tugushev, V. V. Axial toroidal moments in electrodynamics and solid-state physics. Zh. Eksp.Teor. Fiz. 90, 590–605 (1986); (English translation in Sov. Phys. JETP 63, 344–351).

    Google Scholar 

  3. Dubovik, V. M. & Tugushev, V. V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145–202 (1990).

    Article  Google Scholar 

  4. Vrejoiu, C. Electromagnetic multipoles in Cartesian coordinates. J. Phys. A. Math. Gen. 35, 9911–9922 (2002).

    Article  Google Scholar 

  5. Gongora, A. T. & Ley-Koo, E. Complete electromagnetic multipole expansion including toroidal moments. Rev. Mex. Fís 52, 188–197 (2006).

    Google Scholar 

  6. Zel'Dovich, Ia. B. Electromagnetic interaction with parity violation. J. Exp. Theor. Phys. 33, 1531–1533 (1957).

    CAS  Google Scholar 

  7. Flambaum, V. V. & Murray, D. W. Anapole moment and nucleon weak interactions. Phys. Rev. C 56, 1641–1644 (1997).

    Article  CAS  Google Scholar 

  8. Flambaum, V. V. & Khriplovich, I. B. P-odd nuclear forces — a source of parity violation in atoms. Zh. Eksp.Teor. Fiz 79, 1656–1663 (1980); (English translation in Sov. Phys. JETP 52, 835–839).

    CAS  Google Scholar 

  9. Ceulemans, A. & Chibotaru, L. F. Molecular anapole moments. Phys. Rev. Lett. 80, 1861–1864 (1998).

    Article  CAS  Google Scholar 

  10. Afanasiev, G. N. Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems. J. Phys. D. Appl. Phys. 34, 539 (2001).

    Article  CAS  Google Scholar 

  11. Afanasiev, G. N. & Dubovik, V. M. Some remarkable charge–current configurations. Phys. Part. Nuclei 29, 366–391 (1998).

    Article  Google Scholar 

  12. Dubovik, V. M. & Cheshkov, A. A. Multipole expansion in classic and quantum field theory and radiation. Sov. J. Particles. Nucl. 5, 318–337 (1974).

    Google Scholar 

  13. Afanasiev, G. N. The electromagnetic field of solenoids with time-dependent currents. J. Phys. A. Math. Gen. 23, 5755–5764 (1990).

    Article  Google Scholar 

  14. Afanasiev, G. N. & Stepanovsky, Y. P. The electromagnetic field of elementary time-dependent toroidal sources. J. Phys. A. Math. Gen. 28, 4565–4580 (1995).

    Article  Google Scholar 

  15. Radescu, E. E. & Vlad, D. H. Angular momentum loss by a radiating toroidal dipole. Phys. Rev. E 57, 6030–6037 (1998).

    Article  CAS  Google Scholar 

  16. Radescu, E. E. & Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 65, 046609 (2002).

    Article  CAS  Google Scholar 

  17. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  CAS  Google Scholar 

  18. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946).

    Article  CAS  Google Scholar 

  19. Zheludev, I. S., Perekalina, T. M., Smirnovskaya, E. M., Fonton, S. S. & Yarmukhamedov, Y. N. Magnetic properties of nickel-boracite iodide. JETP Lett. 20, 129–130 (1974).

    Google Scholar 

  20. Ginzburg, V. L., Gorbatsevich, A. A., Kopayev, Y. V. & Volkov, B. A. On the problem of superdiamagnetism. Solid State Commun. 50, 339–343 (1984).

    Article  CAS  Google Scholar 

  21. Sannikov, D. G. & Zheludev, I. S. On the possibility of phase transitions with spontaneous toroidal moment formation in nickel boracites. Sov. Phys. Solid State 27, 826–828 (1985).

    Google Scholar 

  22. Crone J. C. & Chung, P. W. Modeling of Toroidal Ordering in Ferroelectric Nanodots (Army Research Laboratory, 2007).

    Google Scholar 

  23. Dubovik, V. M. Material equations for electromagnetism with toroidal polarizations. Phys. Rev. E 61, 7087–7097 (2000).

    Article  CAS  Google Scholar 

  24. Ederer, C. & Spaldin, N. A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).

    Article  CAS  Google Scholar 

  25. Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  CAS  Google Scholar 

  26. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  27. Planes, A., Castán, T. & Saxena, A. Recent progress in the thermodynamics of ferrotoroidic materials. Multiferroic Mater. 1, 9–22 (2015).

    Google Scholar 

  28. Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  29. Pyatakov, A. P. & Zvezdin, A. K. Magnetoelectric and multiferroic media. Phys. Usp. 55, 557–581 (2012).

    Article  CAS  Google Scholar 

  30. Tolstoi, N. A. & Spartakov, A. A. Aromagnetism: a new type of magnetism. JETP Lett. 52, 161–164 (1990).

    Google Scholar 

  31. Fedotov, V. A., Marinov, K., Boardman, A. D. & Zheludev, N. I. On the aromagnetism and anapole moment of anthracene nanocrystals. New J. Phys. 9, 95 (2007).

    Article  CAS  Google Scholar 

  32. Martsenyuk, M. A. & Martsenyuk, N. M. Origin of aromagnetism. JETP Lett. 53, 243–246 (1991).

    Google Scholar 

  33. Toledano, P., Khalyavin, D. D. & Chapon, L. C. Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba2CoGe2O7 . Phys. Rev. B 84, 094421 (2011).

    Article  CAS  Google Scholar 

  34. Tokura, Y. Multiferroics — toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145–1150 (2007).

    Article  CAS  Google Scholar 

  35. Sannikov, D. G. Phenomenological theory of the magnetoelectric effect in some boracites. Zh. Eksp. Teor. Fiz. 111, 536–546 (1997); (English translation in J. Exp. Theor. Phys. 84, 293–299).

    CAS  Google Scholar 

  36. Mettout, B., Tolédano, P. & Fiebig, M. Symmetry replication and toroidic effects in the multiferroic pyroxene NaFeSi2O6 . Phys. Rev. B 81, 214417 (2010).

    Article  CAS  Google Scholar 

  37. Feng, H.-J. & Liu, F.-M. Ab initio prediction on ferrotoroidic and electronic properties of olivine Li4 MnFeCoNiP4O16 . Chinese Phys. B 18, 2481–2486 (2009).

    Article  CAS  Google Scholar 

  38. Hayami, S., Kusunose, H. & Motome, Y. Toroidal order in metals without local inversion symmetry. Phys. Rev. B 90, 024432 (2014).

    Article  CAS  Google Scholar 

  39. Yamaguchi, Y. & Kimura, T. Magnetoelectric control of frozen state in a toroidal glass. Nature Commun. 4, 2063 (2013).

    Article  CAS  Google Scholar 

  40. Lin, S.-Y. et al. Coupling Dy3 triangles to maximize the toroidal moment. Angew. Chem. Int. Ed. 51, 12767–12771 (2012).

    Article  CAS  Google Scholar 

  41. Berger, R. J. F. Prediction of a cyclic helical oligoacetylene showing anapolar ring currents in the magnetic field. Z. Naturforsch. B 67b, 1127–1131 (2012).

    Article  Google Scholar 

  42. Popov, Y. F. et al. Magnetoelectric effect and toroidal ordering in Ga2−xFexO3 . Zh. Eksp. Teor. Fiz. 114, 263–272 (1998); (English translation in J. Exp. Theor. Phys. 87, 146–151).

    CAS  Google Scholar 

  43. Ressouche, E. et al. Magnetoelectric MnPS3 as a candidate for ferrotoroidicity. Phys. Rev. B 82, 100408 (2010).

    Article  CAS  Google Scholar 

  44. Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nature Commun. 5, 4796 (2014).

    Article  CAS  Google Scholar 

  45. Grahn, P., Shevchenko, A. & Kaivola, M. Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14, 093033 (2012).

    Article  CAS  Google Scholar 

  46. Arango, F. B. & Koenderink, A. F. Polarizability tensor retrieval for magnetic and plasmonic antenna design. New J. Phys. 15, 073023 (2013).

    Article  Google Scholar 

  47. Cho, K. Microscopic Expression of Chiral Susceptibilities. Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics 672–674 (2011); http://go.nature.com/PNQmvj

  48. Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nature Commun. 6, 8069 (2015).

    Article  CAS  Google Scholar 

  49. Zhang, X.-L., Wang, S. B., Lin, Z., Sun, H.-B. & Chan, C. T. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole. Phys. Rev. A 92, 043804 (2015).

    Article  CAS  Google Scholar 

  50. Savinov, V., Fedotov, V. A. & Zheludev, N. I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys. Rev. B 89, 205112 (2014).

    Article  CAS  Google Scholar 

  51. Kaelberer, T., Fedotov, V. A., Papasimakis, N., Tsai, D. P. & Zheludev, N. I. Toroidal dipolar response in a metamaterial. Science 330, 1510–1512 (2010).

    Article  CAS  Google Scholar 

  52. Aggarwal K. M. Keenan, F. P. Radiative rates for E1, E2, M1 and M2 transitions in Fe X. Astron. Astrophys. 427, 763–767 (2004).

    Article  CAS  Google Scholar 

  53. Marinov, K., Boardman, A. D., Fedotov, V. A. & Zheludev, N. I. Toroidal metamaterial. New J. Phys. 9, 324 (2007).

    Article  Google Scholar 

  54. Papasimakis, N., Fedotov, V. A., Marinov, K. & Zheludev, N. I. Gyrotropy of a metamolecule: wire on a torus. Phys. Rev. Lett. 103, 093901 (2009).

    Article  CAS  Google Scholar 

  55. Dong, Z.-G., Ni, P., Zhu, J., Yin, X. & Zhang, X. Toroidal dipole response in a multifold double-ring metamaterial. Opt. Express 20, 13065–13070 (2012).

    Article  Google Scholar 

  56. Ye, Q. W. et al. The magnetic toroidal dipole in steric metamaterial for permittivity sensor application. Phys. Scripta 88, 055002 (2013).

    Article  CAS  Google Scholar 

  57. Fan, Y., Wei, Z., Li, H., Chen, H. & Soukoulis, C. M. Low-loss and high-Q planar metamaterial with toroidal moment. Phys. Rev. B 87, 115417 (2013).

    Article  CAS  Google Scholar 

  58. Savinov, V., Delfanazari, K., Fedotov, V. A. & Zheludev, N. I. Planar superconducting toroidal metamaterial: a source for oscillating vector-potential? 2014 Conference on Lasers and Electro-Optics (CLEO) FTu1C.1 (2014).

    Google Scholar 

  59. Ding, C. et al. Stable terahertz toroidal dipolar resonance in a planar metamaterial. Phys. Status Solidi 252, 1388–1393 (2015).

    Article  CAS  Google Scholar 

  60. Huang, Y. W. et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20, 1760–1768 (2012).

    Article  Google Scholar 

  61. Wu, P. C. et al. Three-dimensional metamaterials: from split ring resonator to toroidal metamolecule. Proc. SPIE 9163 (2014).

  62. Dong, Z.-G. et al. Optical toroidal dipolar response by an asymmetric double-bar metamaterial. Appl. Phys. Lett. 101, 144105 (2012).

    Article  CAS  Google Scholar 

  63. Dong, Z.-G. et al. All-optical Hall effect by the dynamic toroidal moment in a cavity-based metamaterial. Phys. Rev. B 87, 245429 (2013).

    Article  CAS  Google Scholar 

  64. Zhang, Q., Xiao, J. J. & Wang, S. L. Optical characteristics associated with magnetic resonance in toroidal metamaterials of vertically coupled plasmonic nanodisks. J. Opt. Soc. Am. B 31, 1103–1108 (2014).

    Article  CAS  Google Scholar 

  65. Liu, W., Zhang, J. & Miroshnichenko, A. E. Toroidal dipole induced transparency in core-shell nanoparticles. Laser Photon. Rev. 9, 564–570 (2015).

    Article  CAS  Google Scholar 

  66. Kim, S.-H. et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phys. Rev. B 91, 035116 (2015).

    Article  CAS  Google Scholar 

  67. Li, J. et al. Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection. Opt. Lett. 39, 6683–6686 (2014).

    Article  Google Scholar 

  68. Ögüt, B., Talebi, N., Vogelgesang, R., Sigle, W. & van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239–5244 (2012).

    Article  CAS  Google Scholar 

  69. Huang, Y. W. et al. Toroidal lasing spaser. Sci. Rep. 3, 1237 (2013).

    Article  CAS  Google Scholar 

  70. Basharin, A. A. et al. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X 5, 011036 (2015).

    Google Scholar 

  71. Vinogradov, A. P. & Aivazyan, A. V. Scaling theory for homogenization of the Maxwell equations. Phys. Rev. E 60, 987–993 (1999).

    Article  CAS  Google Scholar 

  72. Fernandez-Corbaton, I., Nanz, S. & Rockstuhl, C. On the dynamic toroidal multipoles. Preprint at http://arxiv.org/abs/1507.00755 (2015).

  73. Fedotov, V. A., Rogacheva, A. V., Savinov, V., Tsai, D. P. & Zheludev, N. I. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep. 3, 2967 (2013).

    Article  CAS  Google Scholar 

  74. Liu, W., Zhang, J., Lei, B., Hu, H. & Miroshnichenko, A. E. Invisible nanowires with interfering electric and toroidal dipoles. Opt. Lett. 40, 2293–2296 (2015).

    Article  Google Scholar 

  75. Boardman, A. D. & Marinov, K., Zheludev, N. I. & Fedotov, V. A. Dispersion properties of nonradiating configurations: finite-difference time-domain modeling. Phys. Rev. E 72, 036603 (2005).

    Article  CAS  Google Scholar 

  76. Marengo, E. A. & Ziolkowski, R. W. Nonradiating sources, the Aharonov-Bohm effect, and the question of measurability of electromagnetic potentials. Radio Sci. 37, 10–19 (2002).

    Article  Google Scholar 

  77. Zagoskin, A. M., Chipouline, A., Il'ichev, E., Johansson, J. R. & Nori, F. Toroidal qubits: naturally-decoupled quiet artificial atoms. Preprint at: http://arxiv.org/abs/1406.7678 (2014).

  78. Raybould, T. A. et al. Toroidal optical activity. Preprint at: http://arxiv.org/abs/1508.06192 (2015).

  79. Hellwarth, R. W. & Nouchi, P. Focused one-cycle electromagnetic pulses. Phys. Rev. E 54, 889 (1996).

    Article  CAS  Google Scholar 

  80. Zheludev, N. I., Fedotov, V., Papasimakis, N., Savinov, V. & Raybould, T. Propagating and localized toroidal excitations in free space and metamaterials. Proc. SPIE 9544 (2015).

  81. Raybould, T. A., Fedotov, V. A., Papasimakis, N., Youngs, I. J. & Zheludev, N. I. Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures. Opt. Express 24, 3150–3161 (2016).

    Article  Google Scholar 

  82. Ziolkowski, R. W. Localized transmission of electromagnetic energy. Phys. Rev. A 39, 2005–2033 (1989).

    Article  CAS  Google Scholar 

  83. Ziolkowski, R. W. Properties of electromagnetic beams generated by ultra-wide bandwidth pulse-driven arrays. IEEE Trans. Antennas Propag. 40, 888–905 (1992).

    Article  Google Scholar 

  84. Lemak, S. et al. Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S]-cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. J. Am. Chem. Soc. 135, 17476–17487 (2013).

    Article  CAS  Google Scholar 

  85. Watson, D. W., Jenkins, S. D., Ruostekoski, J., Fedotov, V. A. & Zheludev, N. I. Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods. Preprint at: http://arxiv.org/abs/1510.05609 (2015).

  86. Bao, Y., Zhu, X. & Fang, Z. Plasmonic toroidal dipolar response under radially polarized excitation. Sci. Rep. 5, 11793 (2015).

    Article  CAS  Google Scholar 

  87. Thorner, G., Kiat, J.-M., Bogicevic, C. & Kornev, I. Axial hypertoroidal moment in a ferroelectric nanotorus: a way to switch local polarization. Phys. Rev. B 89, 220103 (2014).

    Article  CAS  Google Scholar 

  88. Savinov, V. Novel toroidal and superconducting metamaterials PhD thesis, Univ. Southampton (2014).

    Google Scholar 

  89. Leroy, B. How to convert the equations of electromagnetism from Gaussian to SI units in less than no time. Am. J. Phys. 53, 589–590 (1985).

    Article  Google Scholar 

  90. Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles. (Wiley, 1983).

Download references

Acknowledgements

The authors are grateful to Din Ping Tsai, Ian Youngs and Janne Ruostekoski for fruitful discussions and acknowledge the support of the MOE Singapore (grant MOE2011-T3-1-005), the UK's Engineering and Physical Sciences Research Council (grants EP/G060363/1, EP/M008797/1), the Defence Science and Technology Laboratory (grant DSTLX-1000068886) and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to the review and edited the text and figures.

Corresponding author

Correspondence to N. Papasimakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papasimakis, N., Fedotov, V., Savinov, V. et al. Electromagnetic toroidal excitations in matter and free space. Nature Mater 15, 263–271 (2016). https://doi.org/10.1038/nmat4563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing