Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed migration of cancer cells guided by the graded texture of the underlying matrix

This article has been updated

Abstract

Living cells and the extracellular matrix (ECM) can exhibit complex interactions that define key developmental, physiological and pathological processes. Here, we report a new type of directed migration—which we term ‘topotaxis’—guided by the gradient of the nanoscale topographic features in the cells’ ECM environment. We show that the direction of topotaxis is reflective of the effective cell stiffness, and that it depends on the balance of the ECM-triggered signalling pathways PI(3)K–Akt and ROCK–MLCK. In melanoma cancer cells, this balance can be altered by different ECM inputs, pharmacological perturbations or genetic alterations, particularly a loss of PTEN in aggressive melanoma cells. We conclude that topotaxis is a product of the material properties of cells and the surrounding ECM, and propose that the invasive capacity of many cancers may depend broadly on topotactic responses, providing a potentially attractive mechanism for controlling invasive and metastatic behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topotactic migration of melanoma cells guided by the gradient of the post density and pre-coated ECM density.
Figure 2: Correlation of the topotactic migration direction and cell stiffness as a function of the local post density.
Figure 3: Modulation of topotaxis direction of 1205Lu cells by perturbations of PI(3)K and ROCK signalling.
Figure 4: Functional PTEN in non-invasive SBcl2 modulates its topotactic properties accounting for the responses shown in Fig. 1.
Figure 5: Modulation of topotaxis direction of SBcl2 cells by perturbations of PI(3)K and ROCK signalling.
Figure 6: A schematic graphic model of the topotaxis in invasive and non-invasive cells.

Similar content being viewed by others

Change history

  • 22 March 2016

    In the version of the Article originally published, the original title omitted a word and should have read 'Directed migration of cancer cells guided by the graded texture of the underlying matrix'. This has been corrected in all versions of the Article.

References

  1. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

    Article  CAS  Google Scholar 

  2. McCarthy, J. B. & Furcht, L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J. Cell Biol. 98, 1474–1480 (1984).

    Article  CAS  Google Scholar 

  3. Aznavoorian, S., Stracke, M. L., Krutzsch, H., Schiffmann, E. & Liotta, L. A. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110, 1427–1438 (1990).

    Article  CAS  Google Scholar 

  4. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  5. Li, S., Huang, N. F. & Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell Biochem. 96, 1110–1126 (2005).

    Article  CAS  Google Scholar 

  6. Kim, D. H., Provenzano, P. P., Smith, C. L. & Levchenko, A. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197, 351–360 (2012).

    Article  CAS  Google Scholar 

  7. Dalby, M. J., Riehle, M. O., Yarwood, S. J., Wilkinson, C. D. & Curtis, A. S. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284, 274–282 (2003).

    Article  CAS  Google Scholar 

  8. Diehl, K. A., Foley, J. D., Nealey, P. F. & Murphy, C. J. Nanoscale topography modulates corneal epithelial cell migration. J. Biomed. Mater. Res. A 75, 603–611 (2005).

    Article  CAS  Google Scholar 

  9. Kaiser, J. P., Reinmann, A. & Bruinink, A. The effect of topographic characteristics on cell migration velocity. Biomaterials 27, 5230–5241 (2006).

    Article  CAS  Google Scholar 

  10. Teixeira, A. I. et al. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27, 3945–3954 (2006).

    Article  CAS  Google Scholar 

  11. Kim, D. H. et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433–5444 (2009).

    Article  CAS  Google Scholar 

  12. Kim, D. H. et al. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv. Funct. Mater. 19, 1579–1586 (2009).

    Article  CAS  Google Scholar 

  13. Sochol, R. D., Higa, A. T., Janairo, R. R. R., Li, S. & Lin, L. W. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7, 4606–4609 (2011).

    Article  CAS  Google Scholar 

  14. Miller, A. J. & Mihm, M. C. Jr Melanoma. N. Engl. J. Med. 355, 51–65 (2006).

    Article  CAS  Google Scholar 

  15. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  Google Scholar 

  16. Mott, J. D. & Werb, Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16, 558–564 (2004).

    Article  CAS  Google Scholar 

  17. Gaggioli, C. et al. Tumor-derived fibronectin is involved in melanoma cell invasion and regulated by V600E B-Raf signaling pathway. J. Invest. Dermatol. 127, 400–410 (2007).

    Article  CAS  Google Scholar 

  18. Kaariainen, E. et al. Switch to an invasive growth phase in melanoma is associated with tenascin-C, fibronectin, and procollagen-I forming specific channel structures for invasion. J. Pathol. 210, 181–191 (2006).

    Article  CAS  Google Scholar 

  19. Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002).

    Article  Google Scholar 

  20. Smith, L. A. & Ma, P. X. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B Biointerfaces 39, 125–131 (2004).

    Article  CAS  Google Scholar 

  21. Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol. 9, 1110–1121 (2007).

    Article  CAS  Google Scholar 

  22. Charras, G. T., Hu, C. K., Coughlin, M. & Mitchison, T. J. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175, 477–490 (2006).

    Article  CAS  Google Scholar 

  23. Morone, N. et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862 (2006).

    Article  CAS  Google Scholar 

  24. Gilden, J. & Krummel, M. F. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton 67, 477–486 (2010).

    CAS  Google Scholar 

  25. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  Google Scholar 

  26. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    Article  CAS  Google Scholar 

  27. An, S. S., Laudadio, R. E., Lai, J., Rogers, R. A. & Fredberg, J. J. Stiffness changes in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283, C792–C801 (2002).

    Article  CAS  Google Scholar 

  28. Wettschureck, N. & Offermanns, S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J. Mol. Med. 80, 629–638 (2002).

    Article  CAS  Google Scholar 

  29. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nature Rev. Mol. Cell Biol. 4, 446–456 (2003).

    Article  CAS  Google Scholar 

  30. Wilkinson, S., Paterson, H. F. & Marshall, C. J. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nature Cell Biol. 7, 255–261 (2005).

    Article  CAS  Google Scholar 

  31. Innocenti, M. et al. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160, 17–23 (2003).

    Article  CAS  Google Scholar 

  32. Welch, H. C., Coadwell, W. J., Stephens, L. R. & Hawkins, P. T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. 546, 93–97 (2003).

    Article  CAS  Google Scholar 

  33. Levine, H., Kessler, D. A. & Rappel, W. J. Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. Proc. Natl Acad. Sci. USA 103, 9761–9766 (2006).

    Article  CAS  Google Scholar 

  34. Janetopoulos, C. & Firtel, R. A. Directional sensing during chemotaxis. FEBS Lett. 582, 2075–2085 (2008).

    Article  CAS  Google Scholar 

  35. Yamada, K. M. & Araki, M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci. 114, 2375–2382 (2001).

    CAS  Google Scholar 

  36. Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene 22, 3113–3122 (2003).

    Article  CAS  Google Scholar 

  37. Levchenko, A. & Iglesias, P. A. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63 (2002).

    Article  CAS  Google Scholar 

  38. Nogueira, C. et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 29, 6222–6232 (2010).

    Article  CAS  Google Scholar 

  39. Hwang, P. H. et al. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett. 172, 83–91 (2001).

    Article  CAS  Google Scholar 

  40. Jeon, H. et al. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nature Mater. 14, 918–923 (2015).

    Article  CAS  Google Scholar 

  41. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281–8286 (2007).

    Article  CAS  Google Scholar 

  42. Ghassemi, S. et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012).

    Article  CAS  Google Scholar 

  43. Kim, P. et al. Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16, 2420–2426 (2005).

    Article  CAS  Google Scholar 

  44. Jeong, H. E., Kwak, R., Khademhosseini, A. & Suh, K. Y. UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: from lotus leaf to gecko foot hairs. Nanoscale 1, 331–338 (2009).

    Article  CAS  Google Scholar 

  45. Ananthanarayanan, B., Fosbrink, M., Rahdar, M. & Zhang, J. Live-cell molecular analysis of Akt activation reveals roles for activation loop phosphorylation. J. Biol. Chem. 282, 36634–36641 (2007).

    Article  CAS  Google Scholar 

  46. Weiger, M. C. et al. Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts. J. Cell Sci. 122, 313–323 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Alani (Boston University) for sharing melanoma cell lines and J. Zhang for sharing plasmids (UCSD); and A. Pellowe and A. L. Gonzalez (Yale University) for help with SEM imaging. J.P. is a recipient of a Samsung scholarship. This work was also supported by NIH grants U01CA15578 and CA16359 (Yale Cancer Center) to A.L. and HL107361, U54 CA141868 and P50 CA103175 to S.S.A. D.-H.K. thanks the Department of Bioengineering at the University of Washington for the new faculty startup fund.

Author information

Authors and Affiliations

Authors

Contributions

J.P., D.-H.K. and A.L. conceived and designed the project. J.P. performed the experiments. D.-H.K., H.-N.K. and M.K.K. designed and fabricated substrata under the supervision of A.L. and K.-Y.S. J.P. and E.H. tracked and analysed migration time-lapse data. C.J.W. transfected plasmids and made cell lines. A.L. and S.S.A. supervised the project. J.P. and A.L. wrote the manuscript. A.L. and S.S.A. reviewed and revised the manuscript.

Corresponding authors

Correspondence to Steven S. An or Andre Levchenko.

Ethics declarations

Competing interests

C.J.W.’s contribution to this work occurred while she was employed by the Johns Hopkins University and does not reflect the views or policies of her current employer, the US Food and Drug Administration.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13891 kb)

Supplementary Information 1

Supplementary Information 1 (TXT 0 kb)

Supplementary Information 2

Supplementary Information 2 (TXT 0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kim, DH., Kim, HN. et al. Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nature Mater 15, 792–801 (2016). https://doi.org/10.1038/nmat4586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing