Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation

Abstract

The mechanical behaviour of nanocrystalline materials (that is, polycrystals with a grain size of less than 100 nm) remains controversial. Although it is commonly accepted that the intrinsic deformation behaviour of these materials arises from the interplay between dislocation and grain-boundary processes, little is known about the specific deformation mechanisms. Here we use large-scale molecular-dynamics simulations to elucidate this intricate interplay during room-temperature plastic deformation of model nanocrystalline Al microstructures. We demonstrate that, in contrast to coarse-grained Al, mechanical twinning may play an important role in the deformation behaviour of nanocrystalline Al. Our results illustrate that this type of simulation has now advanced to a level where it provides a powerful new tool for elucidating and quantifying–in a degree of detail not possible experimentally–the atomic-level mechanisms controlling the complex dislocation and grain-boundary processes in heavily deformed materials with a submicrometre grain size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snapshot for a grain diameter of 70 nm at 10.3% plastic strain, revealing two well-known mechanisms for the formation of two distinct types of deformation twins (seen in processes 1–5 and 6, respectively).
Figure 2: Snapshot at 11.9% plastic strain for a grain diameter of 45nm. A variety of processes involving dislocation-dislocation and dislocation-GB interactions has now taken place.
Figure 3: Successive snapshots of the vicinity of the triple junction connecting grains 2, 3 and 4, demonstrating the mechanism by which the new grain A in Fig. 2 was formed.

Similar content being viewed by others

References

  1. Koch, C.C. & Suryanarayana, C. in Microstructure and Properties of Materials Vol. 2 (ed. Li, J. C. M.) Ch. 6 380–385 (World Scientific, Singapore, 2000).

    Google Scholar 

  2. Karch, J., Birringer, R. & Gleiter, H. Ceramics ductile at low-temperature. Nature 330, 556–558 (1987).

    Article  CAS  Google Scholar 

  3. McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. & Mukherjee, A.K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684–686 (1999).

    Article  CAS  Google Scholar 

  4. Kim, B.N., Hiraga, K., Morita, K. & Sakka, Y. A high-strain-rate superplastic ceramic. Nature 413, 288–291 (2001).

    Article  CAS  Google Scholar 

  5. Siegel, R.W. Mechanical properties of nanophase materials. Mater. Sci. Forum 235–238, 851–860 (1997).

    Google Scholar 

  6. Morris, D.G. & Morris, M.A. Hardness, strength, ductility and toughness of nanocrystalline materials. Mater. Sci. Forum 235–238, 861–872 (1997).

    Google Scholar 

  7. Nesladek, P. & Veprek, S. Superhard nanocrystalline composites with hardness of diamond. Phys. Status Solidi A 177, 53–62 (2000).

    Article  Google Scholar 

  8. Yip, S. Nanocrystals—the strongest size. Nature 391, 532–533 (1998).

    Article  CAS  Google Scholar 

  9. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S.R., & Gleiter, H. Length-scale effects in the nucleation of extended lattice dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49, 2713–2722 (2001).

    Article  CAS  Google Scholar 

  10. Ercolessi, F. & Adams, J.B. Interatomic potentials from 1st-principle calculations – the force-matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  CAS  Google Scholar 

  11. Noonan, J.R. & Davis, H.L. Truncation-induced multilayer relaxation of the Al(110) surface. Phys. Rev. B 29, 4349–4355 (1984).

    Article  CAS  Google Scholar 

  12. Schiotz, J., DiTolla, F.D. & Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  13. Schiotz, J., Vegge, T., DiTolla, F.D. & Jacobsen, K.W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60, 11971–11983 (1999).

    Article  CAS  Google Scholar 

  14. Swygenhoven, H.V., Spaczer, M., Caro, A. & Farkas, D. Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22–25 (1999).

    Article  Google Scholar 

  15. Weertman, J. & Weertman, J.R. Elementary Dislocation Theory (Oxford Univ. Press, New York, 1992).

    Google Scholar 

  16. Jonsson, H. & Andersen, H.C. Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).

    Article  CAS  Google Scholar 

  17. El-Danaf, E., Kalindi, S.R. & Doherty, R. Influence of grain size and stacking-fault energy on deformation twinning. Metall. Mater. Trans. A 30, 1223–1233 (1999).

    Article  Google Scholar 

  18. Ungar, T., Ott, S., Sanders, P.G., Borbely, A. & Weertman, J.R. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 46, 3693–3699 (1998).

    Article  CAS  Google Scholar 

  19. Gleiter, H. in Progress in Materials Science, Chalmers Anniversary Volume (eds Christian, J. W., Haasen, P. & Massalski, T. B.) 172 (Pergamon, Oxford, 1981).

    Google Scholar 

  20. Hirth, J.P. & Hoagland, R.G. Extrinsically dissociated dislocations in simulated aluminium. Phil. Mag. A 78, 529–532 (1998).

    Article  CAS  Google Scholar 

  21. Hirth, J.P. & Lothe, J. Theory of Dislocations Ch. 10-3 (Wiley, New York, 1992).

  22. Zhou, S.J., Preston, D.L., Lomdahl, P.S. & Beazley, D.M. Large-scale molecular dynamics simulations of dislocation intersection in copper. Science 279, 1525–1527 (1998).

    Article  CAS  Google Scholar 

  23. Bulatov, V., Abraham, F.F., Kubin, L., Devincre, B. & Yip, S. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998).

    Article  CAS  Google Scholar 

  24. Gouldstone, A., Koh, H.-J., Zeng, K.-Y., Giannakopoulos, A.E. & Suresh, S. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277–2295 (2000).

    Article  CAS  Google Scholar 

  25. Gouldstone, A., Van Vliet, K.J. & Suresh, S. Simulation of defect nucleation in a crystal. Nature 411, 656 (2001).

  26. Yamakov, V., Wolf, D., Phillpot S.R. & Gleiter, H. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 50, 61–73 (2002).

    Article  CAS  Google Scholar 

  27. Coble, R.L. A model for boundary-diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963).

    Article  Google Scholar 

  28. Keblinski, P., Phillpot, S.R., Wolf, D. & Gleiter, H. Self-diffusion in high-angle fcc-metal grain boundaries by molecular-dynamics simulation. Phil. Mag. A 79, 2735–2761 (1999).

    Article  CAS  Google Scholar 

  29. Keblinski, P., Phillpot, S.R., Wolf, D. & Gleiter, H. Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials. Phys. Rev. Lett. 77, 2965–2968 (1996).

    Article  CAS  Google Scholar 

  30. Wolf, D. in The Encyclopedia of Materials: Science and Technology (ed. Cahn, R.) 3597–3609 (Elsevier, Amsterdam, 2001).

    Book  Google Scholar 

  31. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  32. Melchionna, S., Ciccotti, G. & Holian, B.L. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533–544 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.Y.,D.W. and S.R.P.P. are supported by the US Department of Energy, Basic Energy Sciences-Materials Science under contract W-31-109-Eng-38. V.Y. also thanks the DOE/BES Computational Materials Science Network (CMSN) for support. A.K.M. acknowledges support from the National science Foundation-Division of Materials Research. We are grateful for computer time on the Cray-3E at the John-von-Neumann Institut for Computing in Jülich, Germany, and on the Chiba City Linux cluster at Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Wolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41563_2002_BFnmat700_MOESM1_ESM.mov

Movie S1. A movie of the full simulation of deformation of nanocrystalline Al with grains of 45 nm in diameter perfect-crystal atoms as being either in a local hcp (red atoms) or fcc (MOV 5193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamakov, V., Wolf, D., Phillpot, S. et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Mater 1, 45–49 (2002). https://doi.org/10.1038/nmat700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing