Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds

Abstract

A significant challenge faced in the use of nanoscale building blocks is developing parallel methods for interconnecting and patterning assemblies of the individual components. Molecular or polymeric scaffolds hold promise as a means of preparing closely spaced, specifically arranged nanoscale assemblies. Here we show how a biopolymer, DNA, can be used as a scaffold for the assembly of extended, close-packed, ligand-stabilized metal nanoparticle structures, including several desirable architectures (such as lines, ribbons, and branches). Electrostatic binding of ligand-stabilized nanoparticles to the DNA backbone results in extended linear chain-like structures, ribbon-like structures composed of parallel nanoparticle chains, and branched structures. High-resolution transmission electron microscopy shows that the particles are evenly spaced, separated only by the 15 Å imposed by the intervening ligand shell. These studies demonstrate that biomolecular nanolithography (the arrangement of nanoscale building blocks on biomolecular scaffolds) is a viable approach to interconnecting individual devices into extended, closely spaced assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoassemblies of gold nanoparticles formed during solution phase assembly.
Figure 2: Transmission electron microscopy (TEM) of close-packed, linear nanoparticle/DNA assemblies.
Figure 3: Ribbon-type assemblies composed of multiple λ-DNA scaffolds cross-linked by the gold nanoparticles.
Figure 4: TEM micrograph of a branching portion of a nanoparticle/DNA assembly.
Figure 5: Monitoring the assembly process in solution by ultraviolet-visible spectroscopy.

Similar content being viewed by others

References

  1. Tour, J.M. et al. Synthesis and preliminary testing of molecular wires and devices. Chem. Eur. J. 7, 5118–5134 (2001).

    Article  CAS  Google Scholar 

  2. Matsumoto, M., Tachibana, H. & Nakamura, T. Applications of organic conductors: molecular electronics. Appl. Phys. 4, 759–790 (1994).

    CAS  Google Scholar 

  3. Sugi, M. Langmuir–Blodgett films – a course towards molecular electronics: a review. J. Mol. Electron. 1, 3–17 (1985).

    CAS  Google Scholar 

  4. Luo, Y. et al. Two-dimensional molecular electronics circuits. Chem. Phys. Chem. 3, 519–525 (2002).

    Article  CAS  Google Scholar 

  5. Perkins, J. et al. Toward artificial molecular devices. Mol. Electron. Bioelectron. 12, 69–74 (2001).

    CAS  Google Scholar 

  6. Heath, J.R. Nanoscale Materials. Acc. Chem. Res. 32, 388 (1999).

    Article  CAS  Google Scholar 

  7. Tans, S.J., Verschueren, A.R.M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  8. Avouris, P., Collins, P.G. & Arnold, M.S. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  Google Scholar 

  9. Gardner, T.J., Frisbie, C.D. & Wrighton, M.S. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics. J. Am. Chem. Soc. 117, 6927–6933 (1995).

    Article  CAS  Google Scholar 

  10. Vijayamohanan, K. & Aslam, M. Applications of self-assembled monolayers for biomolecular electronics. Appl. Biochem. Biotech. 96, 25–39 (2001).

    Article  CAS  Google Scholar 

  11. Fan, F.-R.F. et al. Determination of the molecular electrical properties of self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 123, 2454–2455 (2001).

    Article  CAS  Google Scholar 

  12. Collier, C.P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  CAS  Google Scholar 

  13. Berven, C.A., Clarke, L., Mooster, J.L., Wybourne, M.N. & Hutchison, J.E. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. Adv. Mater. 13, 109–113 (2001).

    Article  CAS  Google Scholar 

  14. Andres, R.P. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).

    Article  CAS  Google Scholar 

  15. Osifchin, R.G. et al. Synthesis of a quantum dot superlattice using molecularly linked metal clusters. Superlattices Microstruct. 18, 283 (1995).

    Article  CAS  Google Scholar 

  16. Kim, S.H. et al. Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl. Phys. Lett. 74, 317–319 (1999).

    Article  CAS  Google Scholar 

  17. Parthasarathy, R., Lin, X.-M. & Jaeger, H.M. Electron transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Los Alamos Natl Lab., Prepr. Arch., Condens. Mat. 1–4 (2001) (doi:arXiv:cond-mat/0102446).

  18. Warner, M.G. & Hutchison, J.E. in Synthesis, Functionalization, and Surface Treatment of Nanoparticles (ed. Baraton, M.-I.) (American Scientific, San Francisco, 2002).

    Google Scholar 

  19. Wyrwa, D., Beyer, N. & Schmid, G. One-dimensional arrangements of metal nanoclusters. Nano. Lett. 2, 410 (2002).

    Article  Google Scholar 

  20. Clarke, L., Wybourne, M.N., Yan, M., Cai, S.X. & Keana, J.F.W. Transport in gold cluster structures defined by electron-beam lithography. Appl. Phys. Lett. 71, 617–619 (1997).

    Article  CAS  Google Scholar 

  21. Clarke, L. et al. Fabrication and near-room temperature transport of patterned gold cluster structures. J. Vac. Sci. Technol. B 15, 2925–2929 (1997).

    Article  CAS  Google Scholar 

  22. Hutchison, J.E. Nanoscience turns green. Chem. Eng. News 79, 200 (2001).

    Google Scholar 

  23. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  24. Storhoff, J.J. & Mirkin, C.A. Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999).

    Article  CAS  Google Scholar 

  25. Mirkin, C.A. Programming the assembly of 2 and 3D architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39, 2258–2272 (2000).

    Article  CAS  Google Scholar 

  26. McIntosh, C.M. et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc. 123, 7626–7629 (2001).

    Article  CAS  Google Scholar 

  27. Sandhu, K.K., McIntosh, C.M., Simard, J.M., Smith, S.W. & Rotello, V.M. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem. 13, 3–6 (2002).

    Article  CAS  Google Scholar 

  28. Yonezawa, T., Onoue, S.-Y. & Kunitake, T. Formation of one-dimensional arrays of gold nanoparticles with DNA. Kobunshi Ronbunshu 56, 855–859 (1999).

    Article  CAS  Google Scholar 

  29. Yonezawa, T., Onoue, S.-Y. & Kunitake, T. Three-dimensional assembly of cationic gold nanoparticles and anionic organic components: DNA and a bilayer membrane. Stud. Surf. Sci. Catal. 132, 623–626 (2001).

    Article  CAS  Google Scholar 

  30. Torimoto, T. et al. Fabrication of CdS nanoparticle chains along DNA double strands. J. Phys. Chem. B 103, 7799–8803 (1999).

    Article  Google Scholar 

  31. Warner, M.G., Reed, S.M. & Hutchison, J.E. Small, water-soluble, ligand-stabilized gold nanoparticles synthesized by interfacial ligand exchange reactions. Chem. Mater. 12, 3316–3320 (2000).

    Article  CAS  Google Scholar 

  32. Weare, W.W., Reed, S.M., Warner, M.G. & Hutchison, J.E. Improved synthesis of small (dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 122, 12890–12891 (2000).

    Article  CAS  Google Scholar 

  33. Brown, L.O. & Hutchison, J.E. Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J. Am. Chem. Soc. 119, 12384–12385 (1997).

    Article  CAS  Google Scholar 

  34. Hagerman, P.J. Flexibility of DNA. Annu. Rev. Biophys. Biomol. Struc. 17, 265–286 (1988).

    Article  CAS  Google Scholar 

  35. Rivetti, C., Guthold, M. & Bustamante, C. Scanning force microscopy of DNA deposited onto mica: Equilibration versus kinetic trapping studied by statistical polymer chain analysis. J. Mol. Biol. 264, 919–932 (1996).

    Article  CAS  Google Scholar 

  36. Rivetti, C., Walker, C. & Bustamante, C. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280, 41–59 (1998).

    Article  CAS  Google Scholar 

  37. Sivolob, A. & Khrapunov, S.N. Electrostatic contribution to the bending of DNA. Biophys. Chem. 67, 85–96 (1997).

    Article  CAS  Google Scholar 

  38. Olins, D.E., Olins, A.L. & von Hippel, P.H. Model nucleoprotein complexes: Studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol. 24, 157–176 (1967).

    Article  CAS  Google Scholar 

  39. Lees, C.W. & von Hippel, P.H. Hydrogen-exchange studies of deoxyribonucleic acid-protein complexes. Development of a filtration method and application to the deoxyribonucleic acid-polylysine system. Biochemistry 7, 2480–2488 (1968).

    Article  CAS  Google Scholar 

  40. Matthew, J.B. & Richards, F.M. Differential electrostatic stabilization of A-, B-, and Z-forms of DNA. Biopolymers 23, 2743–2759 (1984).

    Article  CAS  Google Scholar 

  41. McGhee, J.D. & Von Hippel, P.H. Theoretical aspects of DNA-protein interactions. Cooperative and noncooperative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–89 (1974).

    Article  CAS  Google Scholar 

  42. Leng, M. & Felsenfeld, G. The preferential interactions of polylysine and polyarginine with specific base sequences in DNA. Proc. Natl Acad. Sci. 56, 1325–1332 (1966).

    Article  CAS  Google Scholar 

  43. Olins, D.E., Olins, A.L. & von Hippel, P.H. On the structure and stability of DNA-protamine and DNA-polypeptide complexes. J. Mol. Biol. 33, 265–281 (1968).

    Article  CAS  Google Scholar 

  44. Rouzina, I. & Bloomfield, V.A. Competitive electrostatic binding of charged ligands to polyelectrolytes: Planar and cylindrical geometries. J. Phys. Chem. 100, 4292–4304 (1996).

    Article  CAS  Google Scholar 

  45. Rouzina, I. & Bloomfield, V.A. Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys. Chem. 64, 139–155 (1997).

    Article  CAS  Google Scholar 

  46. Kumar, A. et al. Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Adv. Mater. 13, 341–344 (2001).

    Article  CAS  Google Scholar 

  47. Sastry, M., Kumar, A., Datar, S., Dharmadhikari, C.V. & Ganesh, K.N. DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure. Appl. Phys. Lett. 78, 2943–2945 (2001).

    Article  CAS  Google Scholar 

  48. Weisbecker, C.S., Merritt, M.V. & Whitesides, G.M. Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12, 3763–3772 (1996).

    Article  CAS  Google Scholar 

  49. Brown, L.O. & Hutchison, J.E. Formation and electron diffraction studies of ordered 2-D and 3-D superlattices of amine stabilized gold nanocrystals. J. Phys. Chem. B 105, 8911–8916 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Peter H. von Hippel for discussions and Ryan C. Chiechi for his assistance in the generation of Fig. 1. This work was supported by the National Science Foundation, the Camille and Henry Dreyfus Foundation (J.E.H. is a Camille and Henry Dreyfus Teacher Scholar) and the Department of Education GAANN program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Hutchison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, M., Hutchison, J. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater 2, 272–277 (2003). https://doi.org/10.1038/nmat853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing