Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanostructured artificial nacre

Abstract

Finding a synthetic pathway to artificial analogs of nacre and bones represents a fundamental milestone in the development of composite materials. The ordered brick-and-mortar arrangement of organic and inorganic layers is believed to be the most essential strength- and toughness-determining structural feature of nacre. It has also been found that the ionic crosslinking of tightly folded macromolecules is equally important. Here, we demonstrate that both structural features can be reproduced by sequential deposition of polyelectrolytes and clays. This simple process results in a nanoscale version of nacre with alternating organic and inorganic layers. The macromolecular folding effect reveals itself in the unique saw-tooth pattern of differential stretching curves attributed to the gradual breakage of ionic crosslinks in polyelectrolyte chains. The tensile strength of the prepared multilayers approached that of nacre, whereas their ultimate Young modulus was similar to that of lamellar bones. Structural and functional resemblance makes clay– polyelectrolyte multilayers a close replica of natural biocomposites. Their nanoscale nature enables elucidation of molecular processes occurring under stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic and macroscopic description of (P/C)n multilayers.
Figure 2: Electron microscopy images of (P/C)n multilayers.
Figure 3: Description of the tensile behaviour of (P/C)n multilayers.
Figure 4: Atomic force microscopy of rarified PDDA films.

Similar content being viewed by others

References

  1. Sarikaya, M. & Aksay, I.A. Design and Processing of Materials by Biomimetics (American Institute of Physics, 1995).

    Google Scholar 

  2. Aksay, I.A. et al. Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 ( 1996).

    Article  CAS  Google Scholar 

  3. Sellinger, A. et al. Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 ( 1998).

    Article  CAS  Google Scholar 

  4. Smith, B.L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 ( 1999).

    Article  CAS  Google Scholar 

  5. Atlan, G. et al. Interface between bone and nacre implant in sheep. Biomaterials 20, 1017–1022 ( 1999).

    Article  CAS  Google Scholar 

  6. Mann, S. Molecular recognition in biomineralization. Nature 332, 119–124 ( 1988).

    Article  CAS  Google Scholar 

  7. Addadi, L. & Weiner, S. Biomineralization: Crystals, asymmetry and life. Nature 411, 753–755 ( 2001).

    Article  CAS  Google Scholar 

  8. Tirrell, M., Kokkoli, E. & Biesalski, M. The role of surface science in bioengineered materials. Surf. Sci. 500, 61–83 ( 2002).

    Article  CAS  Google Scholar 

  9. LeBaron, P.C., Wang, Z. & Pinnavaia, T.J. Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–29 ( 1999).

    Article  CAS  Google Scholar 

  10. Schmidt, D., Shah, D. & Giannelis, E.P. New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 6, 205–212 ( 2002).

    Article  CAS  Google Scholar 

  11. Ozin, G.A. Morphogenesis of biomineral and morphosynthesis of biomimetic forms. Acc. Chem. Res. 30, 17–27 ( 1997).

    Article  CAS  Google Scholar 

  12. Messersmith, P.B. & Giannelis, E.P. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 6, 1719–1725 ( 1994).

    Article  CAS  Google Scholar 

  13. Ray, S.S., Yamada, K., Okamoto, M. & Ueda, K. Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett. 2, 1093–1096 ( 2002).

    Article  CAS  Google Scholar 

  14. Manias, E. et al. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 ( 2001).

    Article  CAS  Google Scholar 

  15. Wang, R.Z., Suo, Z., Evans, A.G., Yao, N. & Aksay, I.A. Deformation mechanism in nacre. J. Mater. Res. 16, 2485–2493 ( 2001).

    Article  CAS  Google Scholar 

  16. Thompson, J.B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 ( 2001).

    Article  CAS  Google Scholar 

  17. Levi-Kalisman, Y., Falini, G., Addadi, L. & Weiner, S. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 135, 8–17 ( 2001).

    Article  CAS  Google Scholar 

  18. Lu, Y. et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410, 913–917 ( 2001).

    Article  CAS  Google Scholar 

  19. Antonietti, M. New polymers for molecular biotechnology. Rev. Molec. Biotechnol. 90, 1–2 ( 2002).

    Article  CAS  Google Scholar 

  20. Fendler, J.H. Biomineralization inspired preparation of nanoparticles and nanoparticulate films. Curr. Opin. Solid State Mater. Sci. 2, 365–369 ( 1997).

    Article  CAS  Google Scholar 

  21. Almqvist, N. et al. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37–43 ( 1999).

    Article  Google Scholar 

  22. Decher, G. Fuzzy nanoassemblies toward layered polymeric multicomposites. Science 277, 1232–1237 ( 1997).

    Article  CAS  Google Scholar 

  23. Lvov, Y., Haas, H., Decher, G., Möhwald, H. & Kalachev, A. Assembly of polyelectrolyte molecular films onto plasma-treated glass. J. Phys. Chem. 97, 12835–12841 ( 1993).

    Article  CAS  Google Scholar 

  24. Kotov, N.A. Ordered layered assemblies of nanoparticles. Mater. Res. Bull. 26, 992–997 ( 2001).

    Article  CAS  Google Scholar 

  25. Ferreira, M., Cheung, J.H. & Rubner, M.F. Molecular self-assembly of conjugated polyions: a new process for fabricating multilayer thin film heterostructures. Thin Solid Films 244, 806–809 ( 1994).

    Article  CAS  Google Scholar 

  26. Kleinfeld, E.R. & Ferguson, G.S. Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science 265, 370–373 ( 1994).

    Article  CAS  Google Scholar 

  27. Kotov, N.A. et al. Mechanism of and defect formation in the self assembly of polymeric polycation montmorillonite ultrathin films. J. Amer. Chem. Soc. 119, 6821–6832 ( 1997).

    Article  CAS  Google Scholar 

  28. Keller, S.W., Kim, H.N. & Mallouk, T.E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy. J. Am. Chem. Soc. 116, 8817–8818 ( 1994).

    Article  CAS  Google Scholar 

  29. Glinel, K., Laschewsky, A. & Jonas, A.M. Ordered polyelectrolyte “multilayers”. 4. Internal structure of clay-based multilayers. J. Phys. Chem. B 106, 11246–11252 ( 2002).

    Article  CAS  Google Scholar 

  30. Glinel, K., Laschewsky, A. & Jonas, A.M. Ordered polyelectrolyte “multilayers”. 3. Complexing clay platelets with polycations of varying structure. Macromolecules 34, 5267–5274 ( 2001).

    Article  CAS  Google Scholar 

  31. Biswas, M. & Ray, S.S. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 ( 2001).

    Article  CAS  Google Scholar 

  32. Wang, L. & Kanatzidis, M.G. Laminated TaS2/polymer nanocomposites through encapsulative precipitation of exfoliated layers. Chem. Mater. 13, 3717–3727 ( 2001).

    Article  CAS  Google Scholar 

  33. LeBaron, P.C., Wang, Z. & Pinnavaia, T.J. Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–29 ( 1999).

    Article  CAS  Google Scholar 

  34. Mamedov, A.A. et al. Molecular design of strong SWNT/polyelectrolyte multilayers composites. Nature Mater. 1, 190–194 ( 2002).

    Article  CAS  Google Scholar 

  35. Hsieh, M.C., Farris, R.J. & McCarthy, T.J. Mechanical properties of layer-by-layer deposited polyelectrolyte assemblies. PMSE-059 Abstracts of 218th ACS National Meeting, New Orleans, August 22–26 1999 218, 136–137 ( 1999).

    Google Scholar 

  36. Gao, C., Donath, E., Moya, S., Dudnik, V. & Möhwald, H. Elasticity of hollow polyelectrolyte capsules prepared by the layer-by-layer technique. Eur. Phys. J. E. 5, 21–27 ( 2001).

    Article  CAS  Google Scholar 

  37. Evans, A.G. et al. Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 ( 2001).

    Article  CAS  Google Scholar 

  38. Weiner, S. & Wagner, H.D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 ( 1998).

    Article  CAS  Google Scholar 

  39. Katti, D.R., Katti, K.S., Sopp, J.M. & Sarikaya, M. 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comput. Theor. Polym. Sci. 11, 397–404 ( 2001).

    Article  CAS  Google Scholar 

  40. Hackett, E., Manias, E. & Giannelis, E.P. Computer simulation studies of PEO/layer silicate nanocomposites. Chem. Mater. 12, 2161–2167 ( 2000).

    Article  CAS  Google Scholar 

  41. Zax, D.B. et al. Dynamical heterogeneity in nanoconfined poly(styrene) chains. J. Chem. Phys. 112, 2945–2951 ( 2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.A.K. thanks the financial support of this project from the National Science Foundation (NSF) CAREER, NSF-Biophotonics, Air Force Office of Scientific Research (AFOSR), Oklahoma Center for Advancement of Science and Technology (OCAST) and Nomadics. The authors are grateful to Arif Mamedov (Nomadics) for LBL consultations, R. Ruoff, F. Fisher, and P. Messersmith (Northwestern University) for helpful critical suggestions and to Phoebe Doss (Oklahoma State University) for assistance with TEM and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure S1 Effect of delaminating agent on the structure of the multilayers.

Figure S2 Optical microphotograph of the broken edge in (P/C)100 film. (PDF 1811 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Kotov, N., Magonov, S. et al. Nanostructured artificial nacre. Nature Mater 2, 413–418 (2003). https://doi.org/10.1038/nmat906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat906

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing